On the asymptotic solutions of boundary value problems for a class of systems of nonlinear differential equations (I)

被引:1
作者
Jiang, FR [1 ]
机构
[1] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
关键词
system of nonlinear differential equations; boundary value problems; asymptotic solution;
D O I
10.1023/A:1015554303215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u" = nu, epsilon nu" + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.
引用
收藏
页码:282 / 293
页数:12
相关论文
共 6 条
[1]   APPLICATIONS OF MAXIMUM PRINCIPLE TO SINGULAR PERTURBATION PROBLEMS [J].
DORR, FW ;
PARTER, SV ;
SHAMPINE, LF .
SIAM REVIEW, 1973, 15 (01) :43-88
[2]   SINGULAR PERTURBATIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS WITH TURNING POINTS [J].
DORR, FW ;
PARTER, SV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1970, 29 (02) :273-&
[3]   REFINED APPROXIMATIONS OF THE SOLUTIONS OF A COUPLED SYSTEM WITH TURNING-POINTS [J].
HARRIS, WA ;
SHAO, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 92 (01) :125-144
[4]   ASYMPTOTIC ANALYSIS OF MODEL PROBLEMS FOR A COUPLED SYSTEM [J].
HOWES, FA ;
SHAO, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (09) :1013-1024
[5]  
JIANG FR, 1987, SCI SIN A-MATH P A T, V30, P588
[6]  
Jiang FR, 1981, APPL MATH MECH, V2, P505, DOI 10.1007/BF01895454