A Land Surface Temperature Retrieval Method for UAV Broadband Thermal Imager Data

被引:21
作者
Wang, Ziwei [1 ]
Zhou, Ji [1 ,2 ]
Liu, Shaomin [3 ]
Li, Mingsong [1 ]
Zhang, Xiaodong [4 ,5 ]
Huang, Zhiming [1 ]
Dong, Weichen [3 ]
Ma, Jin [1 ]
Ai, Lijiao [6 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[3] Beijing Normal Univ, Fac Geogr Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[4] Shanghai Aerosp Elect Technol Inst, China 201109, Peoples R China
[5] Shanghai Spaceflight Inst TT&C & Telecommun, Shanghai 201109, Peoples R China
[6] Chongqing Landscape & Gardening Res Inst, Chongqing 401329, Peoples R China
基金
美国国家科学基金会;
关键词
Land surface temperature; Unmanned aerial vehicles; Remote sensing; Atmospheric measurements; Uncertainty; Temperature sensors; Atmospheric waves; Broadband thermal imager; land surface temperature (LST); lookup table (LUT); thermal infrared (TIR) remote sensing; unmanned aerial vehicle (UAV);
D O I
10.1109/LGRS.2021.3100586
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Unmanned aerial vehicle (UAV) thermal infrared (TIR) remote sensing is an important way to obtain land surface temperature (LST) with high spatial and temporal resolutions. Due to wide spectral response function (SRF) ranges of UAV thermal imagers, currently available LST retrieval methods suitable for satellite sensors may induce significant uncertainty when applied to UAV sensors. Despite that some methods have been proposed to retrieve LST from UAV remote sensing, studies considering the adverse effect caused by the SRF ranges are still rare. Here, we present a so-called Temperature Retrieval for UAV Broadband thermal imager data (TRUB) method to retrieve LST from UAV broadband thermal imager data. TRUB's core includes two parts: 1) a simple lookup table (LUT) algorithm for reducing the uncertainty induced by the wide SRF ranges; and 2) models suitable for UAV remote sensing for estimating the atmospheric parameters. Validation from the Heihe River Basin shows that the LST retrieved by TRUB, of which the root mean square error (RMSE) and mean bias error (MBE) is 1.71 and -0.02 K, respectively, is highly consistent with the in situ LST. TRUB is helpful to reduce the uncertainty caused by the wide SRF ranges of UAV thermal imagers and quantify the influence of atmosphere, thus can obtain UAV remote-sensing LST with better accuracy in large-area operating missions.
引用
收藏
页数:5
相关论文
共 19 条
  • [1] Atmospheric radiative transfer modeling: a summary of the AER codes
    Clough, SA
    Shephard, MW
    Mlawer, E
    Delamere, JS
    Iacono, M
    Cady-Pereira, K
    Boukabara, S
    Brown, PD
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 91 (02) : 233 - 244
  • [2] Gottsche F. M., 2018, Report From the Field Inter-Comparison Experiment (FICE) for Land Surface Temperature
  • [3] Land Surface Temperature Retrieval for Agricultural Areas Using a Novel UAV Platform Equipped with a Thermal Infrared and Multispectral Sensor
    Heinemann, Sascha
    Siegmann, Bastian
    Thonfeld, Frank
    Muro, Javier
    Jedmowski, Christoph
    Kemna, Andreas
    Kraska, Thorsten
    Muller, Onno
    Schultz, Johannes
    Udelhoven, Thomas
    Wilke, Norman
    Rascher, Uwe
    [J]. REMOTE SENSING, 2020, 12 (07)
  • [4] Challenges and Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera
    Kelly, Julia
    Kljun, Natascha
    Olsson, Per-Ola
    Mihai, Laura
    Liljeblad, Bengt
    Weslien, Per
    Klemedtsson, Leif
    Eklundh, Lars
    [J]. REMOTE SENSING, 2019, 11 (05)
  • [5] A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system
    Li, Xin
    Liu, Shaomin
    Xiao, Qin
    Ma, Mingguo
    Jin, Rui
    Che, Tao
    Wang, Weizhen
    Hu, Xiaoli
    Xu, Ziwei
    Wen, Jianguang
    Wang, Liangxu
    [J]. SCIENTIFIC DATA, 2017, 4
  • [6] Satellite-derived land surface temperature: Current status and perspectives
    Li, Zhao-Liang
    Tang, Bo-Hui
    Wu, Hua
    Ren, Huazhong
    Yan, Guangjian
    Wan, Zhengming
    Trigo, Isabel F.
    Sobrino, Jose A.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2013, 131 : 14 - 37
  • [7] Liu S., 2020, QILIAN MOUNTAINS INT
  • [8] The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China
    Liu, Shaomin
    Li, Xin
    Xu, Ziwei
    Che, Tao
    Xiao, Qing
    Ma, Mingguo
    Liu, Qinhuo
    Jin, Rui
    Guo, Jianwen
    Wang, Liangxu
    Wang, Weizhen
    Qi, Yuan
    Li, Hongyi
    Xu, Tongren
    Ran, Youhua
    Hu, Xiaoli
    Shi, Shengjin
    Zhu, Zhongli
    Tan, Junlei
    Zhang, Yang
    Ren, Zhiguo
    [J]. VADOSE ZONE JOURNAL, 2018, 17 (01)
  • [9] A global long-term (1981-2000) land surface temperature product for NOAA AVHRR
    Ma, Jin
    Zhou, Ji
    Goettsche, Frank-Michael
    Liang, Shunlin
    Wang, Shaofei
    Li, Mingsong
    [J]. EARTH SYSTEM SCIENCE DATA, 2020, 12 (04) : 3247 - 3268
  • [10] Ma M., 2012, COLD ARID REG ENV EN