Shape Control in Multivariate Barycentric Rational Interpolation

被引:0
|
作者
Nguyen, Hoa Thang [1 ]
Cuyt, Annie [1 ]
Celis, Oliver Salazar [1 ]
机构
[1] Univ Antwerp, Dept Wis Inf, B-2020 Antwerp, Belgium
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III | 2010年 / 1281卷
关键词
rational function; multivariate; interpolation; shape control; surface;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The most stable formula for a rational interpolant for use on a finite interval is the barycentric form [1, 2]. A simple choice of the barycentric weights ensures the absence of (unwanted) poles on the real line [3]. In [4] we indicate that a more refined choice of the weights in barycentric rational interpolation can guarantee comonotonicity and coconvexity of the rational interpolant in addition to a polefree region of interest. In this presentation we generalize the above to the multivariate case. We use a product-like form of univariate barycenttic rational interpolants and indicate how the location of the poles and the shape of the function can be controlled. This functionality is of importance in the construction of mathematical models that need to express a certain trend, such as in probability distributions, economics, population dynamics, tumor growth models etc.
引用
收藏
页码:543 / 548
页数:6
相关论文
共 50 条
  • [41] THE BARYCENTRIC RATIONAL INTERPOLATION COLLOCATION METHOD FOR BOUNDARY VALUE PROBLEMS
    Tian, Dan
    He, Ji-Huan
    THERMAL SCIENCE, 2018, 22 (04): : 1773 - 1779
  • [42] Publisher Correction to: On the numerical stability of linear barycentric rational interpolation
    Chiara Fuda
    Rosanna Campagna
    Kai Hormann
    Numerische Mathematik, 2022, 152 (4) : 787 - 788
  • [43] Local shape control of the rational interpolation curves with quadratic denominator
    Duan, Qi
    Liu, Xipu
    Bao, Fangxun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (03) : 541 - 551
  • [44] Multivariate rational interpolation of scattered data
    Becuwe, S
    Cuyt, A
    Verdonk, B
    LARGE-SCALE SCIENTIFIC COMPUTING, 2003, 2907 : 204 - 213
  • [45] UNATTAINABLE POINTS IN MULTIVARIATE RATIONAL INTERPOLATION
    ALLOUCHE, H
    CUYT, A
    JOURNAL OF APPROXIMATION THEORY, 1993, 72 (02) : 159 - 173
  • [46] Sparse interpolation of multivariate rational functions
    Cuyt, Annie
    Lee, Wen-shin
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (16) : 1445 - 1456
  • [47] A New Solution for Optimal Control of Fractional Convection–Reaction–Diffusion Equation Using Rational Barycentric Interpolation
    Majid Darehmiraki
    Arezou Rezazadeh
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 1307 - 1340
  • [48] A Fitzpatrick algorithm for multivariate rational interpolation
    Xia, Peng
    Zhang, Shugong
    Lei, Na
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5222 - 5231
  • [49] A Generalized Barycentric Rational Interpolation Method for Generalized Abel Integral Equations
    Azin H.
    Mohammadi F.
    Baleanu D.
    International Journal of Applied and Computational Mathematics, 2020, 6 (5)
  • [50] Sharp Bounds for Lebesgue Constants of Barycentric Rational Interpolation at Equidistant Points
    Ibrahimoglu, B. Ali
    Cuyt, Annie
    EXPERIMENTAL MATHEMATICS, 2016, 25 (03) : 347 - 354