Evolution equation for quantum entanglement

被引:148
作者
Konrad, Thomas [2 ]
De Melo, Fernando [1 ,3 ]
Tiersch, Markus [1 ,3 ]
Kasztelan, Christian [4 ]
Aragao, Adriano [1 ,5 ]
Buchleitner, Andreas [1 ,3 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Univ KwaZulu Natal, Quantum Res Grp, Sch Phys, ZA-4000 Durban, South Africa
[3] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
[4] Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52056 Aachen, Germany
[5] Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil
关键词
D O I
10.1038/nphys885
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum information technology(1) largely relies on a precious and fragile resource, quantum entanglement, a highly nontrivial manifestation of the coherent superposition of states of composite quantum systems. However, our knowledge of the time evolution of this resource under realistic conditions-that is, when corrupted by environment-induced decoherence is so far limited, and general statements on entanglement dynamics in open systems are scarce(2-11). Here we prove a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement on passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.
引用
收藏
页码:99 / 102
页数:4
相关论文
共 22 条
[1]   Environment-induced sudden death of entanglement [J].
Almeida, M. P. ;
de Melo, F. ;
Hor-Meyll, M. ;
Salles, A. ;
Walborn, S. P. ;
Ribeiro, P. H. Souto ;
Davidovich, L. .
SCIENCE, 2007, 316 (5824) :579-582
[2]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[5]   Optimal dynamical characterization of entanglement [J].
Carvalho, Andre R. R. ;
Busse, Marc ;
Brodier, Olivier ;
Viviescas, Carlos ;
Buchleitner, Andreas .
PHYSICAL REVIEW LETTERS, 2007, 98 (19)
[6]   Decoherence and multipartite entanglement [J].
Carvalho, ARR ;
Mintert, F ;
Buchleitner, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (23)
[7]   Disentanglement and decoherence by open system dynamics [J].
Dodd, PJ ;
Halliwell, JJ .
PHYSICAL REVIEW A, 2004, 69 (05) :052105-1
[8]   Stability of macroscopic entanglement under decoherence -: art. no. 180403 [J].
Dür, W ;
Briegel, HJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (18) :180403-1
[9]   Entanglement breaking channels [J].
Horodecki, M .
REVIEWS IN MATHEMATICAL PHYSICS, 2003, 15 (06) :629-641
[10]  
Jamiolkowski A., 1972, Rep. Math. Phys., V3, P275, DOI [DOI 10.1016/0034-4877(72)90011-0, 10.1016/0034-4877(72)90011-0]