Transdiagnostic connectome signatures from resting-state fMRI predict individual-level intellectual capacity

被引:10
作者
Tong, Xiaoyu [1 ]
Xie, Hua [2 ]
Carlisle, Nancy [3 ]
Fonzo, Gregory A. [4 ]
Oathes, Desmond J. [5 ]
Jiang, Jing [6 ,7 ]
Zhang, Yu [1 ]
机构
[1] Lehigh Univ, Dept Bioengn, Bethlehem, PA 18015 USA
[2] Univ Maryland, Dept Psychol, College Pk, MD 20742 USA
[3] Lehigh Univ, Dept Psychol, Bethlehem, PA 18015 USA
[4] Univ Texas Austin, Dept Psychiat & Behav Sci, Dell Med Sch, Ctr Psychedel Res & Therapy, Austin, TX USA
[5] Univ Penn, Dept Psychiat, Ctr Neuromodulat Depress & Stress, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Iowa, Dept Pediat, Carver Coll Med, Iowa City, IA 52242 USA
[7] Univ Iowa, Dept Psychiat, Carver Coll Med, Iowa City, IA 52242 USA
关键词
FRONTAL-INTEGRATION-THEORY; FUNCTIONAL CONNECTIVITY; BRAIN CONNECTIVITY; INTELLIGENCE; CLASSIFICATION; SUBTYPES; HEALTH; CORTEX; YOUTH;
D O I
10.1038/s41398-022-02134-2
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Medication and other therapies for psychiatric disorders show unsatisfying efficacy, in part due to the significant clinical/biological heterogeneity within each disorder and our over-reliance on categorical clinical diagnoses. Alternatively, dimensional transdiagnostic studies have provided a promising pathway toward realizing personalized medicine and improved treatment outcomes. One factor that may influence response to psychiatric treatments is cognitive function, which is reflected in one's intellectual capacity. Intellectual capacity is also reflected in the organization and structure of intrinsic brain networks. Using a large transdiagnostic cohort (n=1721), we sought to discover neuroimaging biomarkers by developing a resting-state functional connectome-based prediction model for a key intellectual capacity measure, Full-Scale Intelligence Quotient (FSIQ), across the diagnostic spectrum. Our cross-validated model yielded an excellent prediction accuracy (r=0.5573, p<0.001). The robustness and generalizability of our model was further validated on three independent cohorts (n=2641). We identified key transdiagnostic connectome signatures underlying FSIQ capacity involving the dorsal-attention, frontoparietal and default-mode networks. Meanwhile, diagnosis groups showed disorder-specific biomarker patterns. Our findings advance the neurobiological understanding of cognitive functioning across traditional diagnostic categories and provide a new avenue for neuropathological classification of psychiatric disorders.
引用
收藏
页数:11
相关论文
共 83 条
[1]   The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience [J].
Acuna, Carlos .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2012, 6
[2]   Review of EEG, ERP, and Brain Connectivity Estimators as Predictive Biomarkers of Social Anxiety Disorder [J].
Al-Ezzi, Abdulhakim ;
Kamel, Nidal ;
Faye, Ibrahima ;
Gunaseli, Esther .
FRONTIERS IN PSYCHOLOGY, 2020, 11
[3]   An open resource for transdiagnostic research in pediatric mental health and learning disorders [J].
Alexander, Lindsay M. ;
Escalera, Jasmine ;
Ai, Lei ;
Andreotti, Charissa ;
Febre, Karina ;
Mangone, Alexander ;
Vega-Potler, Natan ;
Langer, Nicolas ;
Alexander, Alexis ;
Kovacs, Meagan ;
Litke, Shannon ;
O'Hagan, Bridget ;
Andersen, Jennifer ;
Bronstein, Batya ;
Bui, Anastasia ;
Bushey, Marijayne ;
Butler, Henry ;
Castagna, Victoria ;
Camacho, Nicolas ;
Chan, Elisha ;
Citera, Danielle ;
Clucas, Jon ;
Cohen, Samantha ;
Dufek, Sarah ;
Eaves, Megan ;
Fradera, Brian ;
Gardner, Judith ;
Grant-Villegas, Natalie ;
Green, Gabriella ;
Gregory, Camille ;
Hart, Emily ;
Harris, Shana ;
Horton, Megan ;
Kahn, Danielle ;
Kabotyanski, Katherine ;
Karmel, Bernard ;
Kelly, Simon P. ;
Kleinman, Kayla ;
Koo, Bonhwang ;
Kramer, Eliza ;
Lennon, Elizabeth ;
Lord, Catherine ;
Mantello, Ginny ;
Margolis, Amy ;
Merikangas, Kathleen R. ;
Milham, Judith ;
Minniti, Giuseppe ;
Neuhaus, Rebecca ;
Levine, Alexandra ;
Osman, Yael .
SCIENTIFIC DATA, 2017, 4
[4]   Heterogeneity in psychiatric diagnostic classification [J].
Allsopp, Kate ;
Read, John ;
Corcoran, Rhiannon ;
Kinderrnan, Peter .
PSYCHIATRY RESEARCH, 2019, 279 :15-22
[5]  
[Anonymous], 1992, ICD 10 CLASS MENT BE
[6]   When less is more: TPJ and default network deactivation during encoding predicts working memory performance [J].
Anticevic, Alan ;
Repovs, Grega ;
Shulman, Gordon L. ;
Barch, Deanna M. .
NEUROIMAGE, 2010, 49 (03) :2638-2648
[7]   Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls [J].
Arbabshirani, Mohammad R. ;
Plis, Sergey ;
Sui, Jing ;
Calhoun, Vince D. .
NEUROIMAGE, 2017, 145 :137-165
[8]  
Barelds D.P.F., 2004, GRONINGER INTELLIGEN
[9]   Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence [J].
Basten, Ulrike ;
Hilger, Kirsten ;
Fiebach, Christian J. .
INTELLIGENCE, 2015, 51 :10-27
[10]  
Beijers L, 2022, PSYCHOL MED, V52, P1089, DOI 10.1017/S0033291720002846