Global Strong Solution to the Two-Dimensional Full Compressible Navier-Stokes Equations with Large Viscosity

被引:4
作者
Li, Hao [1 ,3 ]
Shang, Zhaoyang [2 ,3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Shanghai Lixin Univ Accounting & Finance, Sch Finance, Shanghai 201209, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
基金
中国博士后科学基金;
关键词
Navier-Stokes equations; Blow-up criterion; Global strong solution; Exponential decay rate; Vacuum; BOUNDARY-VALUE-PROBLEMS; BLOW-UP CRITERION; CLASSICAL-SOLUTIONS; WELL-POSEDNESS; WEAK SOLUTIONS; EXISTENCE; UNIQUENESS; VACUUM; SYSTEM; FLUIDS;
D O I
10.1007/s00021-021-00641-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the initial-boundary value problem for the full compressible Navier-Stokes equations on the square domain. We show the global existence of the strong solution with vacuum if the coefficient of viscosity mu is suitably large. Moreover, an exponential decay rate of the strong solution is obtained.
引用
收藏
页数:29
相关论文
共 45 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[3]  
Brezis H., 1980, COMMUN PART DIFF EQ, V5, P773
[4]   Unique solvability of the initial boundary value problems for compressible viscous fluids [J].
Cho, Y ;
Choe, HJ ;
Kim, H .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (02) :243-275
[5]   Existence results for viscous polytropic fluids with vacuum [J].
Cho, Yonggeun ;
Kim, Hyunseok .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (02) :377-411
[6]   Strong solutions of the Navier-Stokes equations for isentropic compressible fluids [J].
Choe, HJ ;
Kim, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (02) :504-523
[7]   Global classical solution to the three-dimensional isentropic compressible Navier-Stokes equations with general initial data [J].
Deng XueMei ;
Zhang PeiXin ;
Zhao JunNing .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (12) :2457-2468
[8]   Global classical solutions to the 2D compressible Navier-Stokes equations with vacuum [J].
Ding, Shijin ;
Huang, Bingyuan ;
Liu, Xiaoling .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
[9]  
ENGLER H, 1989, COMMUN PART DIFF EQ, V14, P541
[10]   A blow-up criterion for compressible viscous heat-conductive flows [J].
Fan, Jishan ;
Jiang, Song ;
Ou, Yaobin .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :337-350