Uniqueness of shrinking gradient Kahler-Ricci solitons on non-compact toric manifolds

被引:5
作者
Cifarelli, Charles [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, 970 Evans Hall, Berkeley, CA 94720 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2022年 / 106卷 / 04期
基金
美国国家科学基金会;
关键词
SYMPLECTIC FORM; CO-HOMOLOGY; METRICS; CONVEXITY; GEOMETRY; INVARIANT;
D O I
10.1112/jlms.12673
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, up to biholomorphism, there is at most one complete Tn$T<^>n$-invariant shrinking gradient Kahler-Ricci soliton on a non-compact toric manifold M. We also establish uniqueness without assuming Tn$T<^>n$-invariance if the Ricci curvature is bounded and if the soliton vector field lies in the Lie algebra t$\mathfrak {t}$ of Tn$T<^>n$. As an application, we show that, up to isometry, the unique complete shrinking gradient Kahler-Ricci soliton with bounded scalar curvature on CP1xC$\mathbb {C}\mathbb {P}<^>{1} \times \mathbb {C}$ is the standard product metric associated to the Fubini-Study metric on CP1$\mathbb {C}\mathbb {P}<^>{1}$ and the Euclidean metric on C$\mathbb {C}$.
引用
收藏
页码:3746 / 3791
页数:46
相关论文
共 53 条
[1]  
Abreu M, 2001, J DIFFER GEOM, V58, P151
[2]   Kahler geometry of toric varieties and extremal metrics [J].
Abreu, M .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (06) :641-651
[3]  
Abreu M., 2003, Fields Inst. Commun, V35, P1
[4]   Scalar-flat Kahler metrics on non-compact symplectic toric 4-manifolds [J].
Abreu, Miguel ;
Sena-Dias, Rosa .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 41 (02) :209-239
[5]  
[Anonymous], 1974, J. Math. Kyoto Univ, DOI DOI 10.1215/KJM/1250523277
[6]  
Apostolov V, 2004, J DIFFER GEOM, V68, P277
[7]   CONVEXITY AND COMMUTING HAMILTONIANS [J].
ATIYAH, MF .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (JAN) :1-15
[8]  
Audin M., 1991, PROGR MATH, V93
[9]  
Berman RobertJ., 2013, Ann. Fac. Sci. Toulouse Math, V22, P649
[10]  
Bryant RL, 2008, ASTERISQUE, P51