Comprehensive analysis of the combustion of low carbon fuels (hydrogen, methane and coke oven gas) in a spark ignition engine through CFD modeling

被引:47
作者
Ortiz-Imedio, Rafael [1 ]
Ortiz, Alfredo [1 ]
Ortiz, Inmaculada [1 ]
机构
[1] Univ Cantabria, Chem & Biomol Engn Dept, Av Los Castros 46, Santander 39005, Spain
关键词
Coke oven gas; Hydrogen; Methane; Internal combustion engine; Computational fluid dynamics (CFD); Energy conversion; ENRICHED NATURAL-GAS; SI ENGINE; EMISSION CHARACTERISTICS; CHEMICAL-KINETICS; HCCI ENGINE; PERFORMANCE; GASOLINE; PREDICTION; MECHANISM; PRESSURE;
D O I
10.1016/j.enconman.2021.114918
中图分类号
O414.1 [热力学];
学科分类号
摘要
The use of low carbon fuels (LCFs) in internal combustion engines is a promising alternative to reduce pollution while achieving high performance through the conversion of the high energy content of the fuels into mechanical energy. However, optimizing the engine design requires deep knowledge of the complex phenomena involved in combustion that depend on the operating conditions and the fuel employed. In this work, computational fluid dynamics (CFD) simulation tools have been used to get insight into the performance of a Volkswagen Polo 1.4L port-fuel injection spark ignition engine that has been fueled with three different LCFs, coke oven gas (COG), a gaseous by-product of coke manufacture, H2 and CH4. The comparison is made in terms of power, pressure, temperature, heat release, flame growth speed, emissions and volumetric efficiency. Simulations in Ansys (R) Forte (R) were validated with experiments at the same operating conditions with optimal spark advance, wide open throttle, a wide range of engine speed (2000-5000 rpm) and air-fuel ratio (lambda) between 1 and 2. A sensitivity analysis of spark timing has been added to assess its impact on combustion variables. COG, with intermediate flame growth speed, produced the greatest power values but with lower pressure and temperature values at lambda = 1.5, reducing the emissions of NO and the wall heat transfer. The useful energy released with COG was up to 16.5% and 5.1% higher than CH4 and H2, respectively. At richer and leaner mixtures (lambda = 1 and lambda = 2), similar performances were obtained compared to CH4 and H2, combining advantages of both pure fuels and widening the lambda operation range without abnormal combustion. Therefore, suitable management of the operating conditions maximizes the conversion of the waste stream fuel energy into useful energy while limiting emissions.
引用
收藏
页数:13
相关论文
共 77 条
[1]  
Academic Research Forte Ansys, 2021, REL 2021 R1 HELP SYS
[2]   HCNG fueled spark-ignition (SI) engine with its effects on performance and emissions [J].
Alrazen, Hayder A. ;
Ahmad, K. A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :324-342
[3]  
Ansys, 2016, ACC YOUR ENG COMB CF
[4]  
Ansys, 2021, Q3D EXTR HELP
[5]   Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode [J].
Azimov, Ulugbek ;
Tomita, Eiji ;
Kawahara, Nobuyuki ;
Harada, Yuji .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (18) :11985-11996
[6]  
Ball M, 2009, HYDROGEN EC OPPORTUN
[7]   Development and application of a method for characterizing mixture formation in a port-injection natural gas engine [J].
Baratta, Mirko ;
Misul, Daniela ;
Xu, Jiajie .
ENERGY CONVERSION AND MANAGEMENT, 2021, 227
[8]   Engine combustion and emission fuelled with natural gas: A review [J].
Chen, Hao ;
He, Jingjing ;
Zhong, Xianglin .
JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (04) :1123-1136
[9]   A CFD (computational fluid dynamics) study for optimization of gas injector orientation for performance improvement of a dual-fuel diesel engine [J].
Chintala, Venkateswarlu ;
Subramanian, K. A. .
ENERGY, 2013, 57 :709-721
[10]  
Corporation USS, 2010, EXPOSURE, V82493, P1