Change point problem for Markovian arrival queueing models: Bayes factor approach

被引:2
作者
Singh, Saroja Kumar [1 ,2 ]
机构
[1] Sambalpur Univ, Dept Stat, Burla 768019, Odisha, India
[2] Cent Univ Odisha, Dept Stat, Koraput 763004, Odisha, India
关键词
Change point; M/M/1; queue; M/E-r/1queue; Bayes factor; TRAFFIC INTENSITY; INFERENCE; SEQUENCE;
D O I
10.1007/s13198-022-01750-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper considers two Markovian arrival single server queueing models, namely M/M/1 and M/E-r/1. Under the steady state condition, we observe the number of customer present at different time points for the M/M/1 queue while in case of an M/E-r/1 queue we consider the number of arrivals during the service time of a customer. A Bayesian approach is applied to study the change point problems. Testing of hypothesis for change versus no-change is carried out using predictive distributions. Further, Bayes factors are derived for change versus no-change for both the M/M/1 and M/E-r/1 queueing models under natural conjugate beta prior distribution. At last, numerical results are provided for the illustration.
引用
收藏
页码:2847 / 2854
页数:8
相关论文
共 39 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions
[2]   Asymptotic study on change point problem for waiting time data in a single server queue [J].
Acharya, Sarat Kumar ;
Singh, Saroja Kumar ;
Emilio Villarreal-Rodriguez, Cesar .
INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2020, 15 (01) :39-46
[3]  
Acharya SK., 2013, INT J MATH OPER RES, V5, P110, DOI DOI 10.1504/IJMOR.2013.050515
[4]   A note on Bayesian estimation of traffic intensity in single-server Markovian queues [J].
Almeida, Marcio A. C. ;
Cruz, Frederico R. B. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (09) :2577-2586
[5]   A BAYESIAN-ANALYSIS FOR CHANGE POINT PROBLEMS [J].
BARRY, D ;
HARTIGAN, JA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :309-319
[6]   Bayesian inference and prediction in single server M/M/1 queuing model based on queue length [J].
Basak, Arpita ;
Choudhury, Amit .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (06) :1576-1588
[7]   Analysis of a non-Markovian queueing model: Bayesian statistics and MCMC methods [J].
Braham, Hayette ;
Berdjoudj, Louiza ;
Boualem, Mohamed ;
Rahmania, Nadji .
MONTE CARLO METHODS AND APPLICATIONS, 2019, 25 (02) :147-154
[8]  
Broemeling LD., 1972, METRON, V30, P214
[9]   HIERARCHICAL BAYESIAN-ANALYSIS OF CHANGEPOINT PROBLEMS [J].
CARLIN, BP ;
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1992, 41 (02) :389-405
[10]  
Chen J., 2000, PARAMETRIC STAT CHAN, DOI [10.1007/978-1-4757-3131-6, DOI 10.1007/978-1-4757-3131-6]