Overexpression of SoCYP85A1, a Spinach Cytochrome p450 Gene in Transgenic Tobacco Enhances Root Development and Drought Stress Tolerance

被引:70
|
作者
Duan, Fangmeng [1 ]
Ding, Jun [2 ]
Lee, Dongsun [3 ]
Lu, Xueli [4 ]
Feng, Yuqi [2 ,5 ]
Song, Wenwen [1 ]
机构
[1] Qingdao Agr Univ, Coll Plant Hlth & Med, Qingdao, Peoples R China
[2] Wuhan Univ, Dept Chem, Minist Educ, Key Lab Analyt Chem Biol & Med, Wuhan, Hubei, Peoples R China
[3] Jeju Natl Univ, Coll Appl Life Sci, Jeju, South Korea
[4] Chinese Acad Agr Sci, Tobacco Res Inst, Marine Agr Res Ctr, Qingdao, Peoples R China
[5] Wuhan Inst Biotechnol, Wuhan, Hubei, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2017年 / 8卷
关键词
drought stress tolerance; transgenic tobacco; SoCYP85A1; brassinosteroids; stress-responsive genes; ROS; ABIOTIC STRESS; BRASSICA-NAPUS; ABSCISIC-ACID; PLANT DEVELOPMENT; PROTEIN-KINASE; ARABIDOPSIS; BRASSINOSTEROIDS; GROWTH; BIOSYNTHESIS; BRASSINOLIDE;
D O I
10.3389/fpls.2017.01909
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Brassinosteroids (BRs) play an essential role in plant growth, development, and responses to diverse abiotic stresses. However, previous studies mainly analyzed how exogenous BRs influenced plant physiological reactions to drought stress, therefore, genetic evidences for the endogenous BRs-mediated regulation of plant responses still remain elusive. In this study, a key BRs biosynthetic gene, SoCYP85A1 was cloned from Spinacia oleracea, which has a complete open reading frame of 1,392 bp encoding a 464 amino acid peptide and shares high sequence similarities with CYP85A1 from other plants. The expression of SoCYP85A1 which was higher in leaf compared with root and stem, was induced by treatments of PEG6000, abscisic acid (ABA), low temperature and high salt. Increases in both SoCYP85A1 transcripts and endogenous BRs in transgenic tobacco which resulted in longer primary root and more lateral roots enhanced drought tolerance compared with wild types. The transgenic tobacco accumulated much lower levels of reactive oxygen species and malondialdehyde (MDA) than wild types did, accompanied by significantly higher content of proline and notably enhanced activities of antioxidant enzymes. Besides, transcriptional expressions of six stress-responsive genes were regulated to higher levels in transgenic lines under drought stress. Taken together, our results demonstrated that SoCYP85A1 involves in response to drought stress by promoting root development, scavenging ROS, and regulating expressions of stress-responsive genes.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Phosphate-induced-1 gene from Eucalyptus (EgPHI-1) enhances osmotic stress tolerance in transgenic tobacco
    Sousa, A. O.
    Assis, E. T. C. M.
    Pirovani, C. P.
    Alvim, F. C.
    Costa, M. G. C.
    GENETICS AND MOLECULAR RESEARCH, 2014, 13 (01) : 1579 - 1588
  • [32] Knockdown of cytochrome P450 1 A (cyp1a) gene suppresses growth and oxygen tolerance in zebrafish
    Li, Min
    Wang, Dongjie
    Huang, Xiaoping
    Wang, Shulan
    Chen, Zhenhan
    Junaid, Muhammad
    Xie, Shaolin
    JOURNAL OF HAZARDOUS MATERIALS, 2025, 491
  • [33] Overexpression of StCYS1 gene enhances tolerance to salt stress in the transgenic potato (Solanum tuberosum L.) plant
    Liu Min-min
    Li Ya-lun
    Li Guang-cun
    Dong Tian-tian
    Liu Shi-yang
    Liu Pei
    Wang Qing-guo
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2020, 19 (09) : 2239 - 2246
  • [34] Overexpression of Camellia sinensis H1 histone gene confers abiotic stress tolerance in transgenic tobacco
    Weidong Wang
    Yuhua Wang
    Yulin Du
    Zhen Zhao
    Xujun Zhu
    Xin Jiang
    Zaifa Shu
    Ying Yin
    Xinghui Li
    Plant Cell Reports, 2014, 33 : 1829 - 1841
  • [35] Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco
    Charrier, Aurelie
    Planchet, Elisabeth
    Cerveau, Delphine
    Gimeno-Gilles, Christine
    Verdu, Isabelle
    Limami, Anis M.
    Lelievre, Eric
    PLANTA, 2012, 236 (02) : 567 - 577
  • [36] Overexpression of Rice NAC Gene SNAC1 Improves Drought and Salt Tolerance by Enhancing Root Development and Reducing Transpiration Rate in Transgenic Cotton
    Liu, Guanze
    Li, Xuelin
    Jin, Shuangxia
    Liu, Xuyan
    Zhu, Longfu
    Nie, Yichun
    Zhang, Xianlong
    PLOS ONE, 2014, 9 (01):
  • [37] Overexpression of watermelon m6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression
    He, Yanjun
    Li, Yulin
    Yao, Yixiu
    Zhang, Huiqing
    Wang, Yuhuan
    Gao, Jie
    Fan, Min
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 168 : 340 - 352
  • [38] SlCOR413IM1: A novel cold-regulation gene from tomato, enhances drought stress tolerance in tobacco
    Ma, Xiaocui
    Wang, Guodong
    Zhao, Weiyang
    Yang, Minmin
    Ma, Nana
    Kong, Fanying
    Dong, Xinchun
    Meng, Qingwei
    JOURNAL OF PLANT PHYSIOLOGY, 2017, 216 : 88 - 99
  • [39] Over-expression of CYP78A98, a cytochrome P450 gene from Jatropha curcas L., increases seed size of transgenic tobacco
    Tian, Yinshuai
    Zhang, Min
    Hu, Xiaole
    Wang, Linghui
    Dai, Jiao
    Xu, Ying
    Chen, Fang
    ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2016, 19 : 15 - 22
  • [40] Overexpression of Artemisia annua sterol C-4 methyl oxidase gene, AaSMO1, enhances total sterols and improves tolerance to dehydration stress in tobacco
    Singh, Alka
    Jindal, Sunita
    Longchar, Bendangchuchang
    Khan, Feroz
    Gupta, Vikrant
    PLANT CELL TISSUE AND ORGAN CULTURE, 2015, 121 (01) : 167 - 181