Monopoly Using Reinforcement Learning

被引:0
|
作者
Arun, Edupuganti [1 ]
Rajesh, Harikrishna [1 ]
Chakrabarti, Debarka [1 ]
Cherala, Harikiran [1 ]
George, Koshy [1 ]
机构
[1] PES Univ, Dept ECE, Bangalore, Karnataka, India
来源
PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY | 2019年
关键词
Q-Learning; feedforward neural network; reinforcement learning; RECOGNITION;
D O I
10.1109/tencon.2019.8929523
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper elucidates a machine learning model that learns to play a popular board game, namely monopoly. This model is trained and tested against various players, each with different strategies. The model applies a feedforward neural network with the concept of experience replay to learn to play the game. The model and this paper helps to reinforce the idea that there is no one strategy that will always win against any other strategy, while maintaining high win-rates.
引用
收藏
页码:864 / 868
页数:5
相关论文
共 50 条
  • [41] Wireless control using reinforcement learning for practical web QoE
    Moura, Henrique D.
    Macedo, Daniel F.
    Vieira, Marcos A. M.
    COMPUTER COMMUNICATIONS, 2020, 154 : 331 - 346
  • [42] Manufacturing Scheduling Using Colored Petri Nets and Reinforcement Learning
    Drakaki, Maria
    Tzionas, Panagiotis
    APPLIED SCIENCES-BASEL, 2017, 7 (02):
  • [43] Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning
    You, Changxi
    Lu, Jianbo
    Filev, Dimitar
    Tsiotras, Panagiotis
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 114 : 1 - 18
  • [44] Optimal -Tolling Using Reinforcement Learning
    Chakravarty, Sumit
    Tanveer, M. Hassan
    Voicu, Razvan C.
    Banerjee, Madhushri
    SOUTHEASTCON 2024, 2024, : 1317 - 1321
  • [45] Using reinforcement learning to coordinate better
    Excelente-Toledo, CB
    Jennings, NR
    COMPUTATIONAL INTELLIGENCE, 2005, 21 (03) : 217 - 245
  • [46] Relational Verification using Reinforcement Learning
    Chen, Jia
    Wei, Jiayi
    Feng, Yu
    Bastani, Osbert
    Dillig, Isil
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2019, 3 (OOPSLA):
  • [47] Device Codesign using Reinforcement Learning
    Cardwell, Suma G.
    Patel, Karan
    Schuman, Catherine D.
    Smith, J. Darby
    Kwon, Jaesuk
    Maicke, Andrew
    Arzate, Jared
    Incorvia, Jean Anne C.
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [48] Using Combination of Actions in Reinforcement Learning
    Karanik, Marcelo J.
    Gramajo, Sergio D.
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2010, 10 (01): : 19 - 23
  • [49] Redirection Controller Using Reinforcement Learning
    Chang, Yuchen
    Matsumoto, Keigo
    Narumi, Takuji
    Tanikawa, Tomohiro
    Hirose, Michitaka
    IEEE ACCESS, 2021, 9 : 145083 - 145097
  • [50] Reinforcement Learning using Kalman Filters
    Takahata, Kei
    Miura, Takao
    PROCEEDINGS OF THE 2019 IEEE 18TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2019), 2019, : 136 - 143