Weak, strong and linear convergence of the CQ-method via the regularity of Landweber operators

被引:20
作者
Cegielski, Andrzej [1 ]
Reich, Simeon [2 ]
Zalas, Rafal [2 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Zielona Gora, Poland
[2] Technion Israel Inst Technol, Dept Math, Haifa, Israel
基金
以色列科学基金会;
关键词
CQ-method; linear rate; split feasibility problem; FIXED-POINT PROBLEM; SUCCESSIVE-APPROXIMATIONS; FEASIBILITY PROBLEM; SPLIT; PROJECTION; ALGORITHM; SETS; ITERATION; SEQUENCE;
D O I
10.1080/02331934.2019.1598407
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the split convex feasibility problem in a fixed point setting. Motivated by the well-known CQ-method of Byrne [Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 2002;18:441-453], we define an abstract Landweber transform which applies to more general operators than the metric projection. We call the result of this transform a Landweber operator. It turns out that the Landweber transform preserves many interesting properties. For example, the Landweber transform of a (quasi/firmly) nonexpansive mapping is again (quasi/firmly) nonexpansive. Moreover, the Landweber transform of a (weakly/linearly) regular mapping is again (weakly/linearly) regular. The preservation of regularity is important because it leads to (weak/linear) convergence of many CQ-type methods.
引用
收藏
页码:605 / 636
页数:32
相关论文
共 52 条
[1]  
[Anonymous], 1951, AM J MATH, DOI DOI 10.2307/2372313
[2]  
[Anonymous], ARXIV171102130V1
[3]  
[Anonymous], BEST APPROXIMATION I
[4]   Viscosity approximation process for a sequence of quasinonexpansive mappings [J].
Aoyama, Koji ;
Kohsaka, Fumiaki .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[5]  
Baillon J. B., 1978, Houston Journal of Mathematics, V4, P1
[6]   Linear convergence rates for extrapolated fixed point algorithms [J].
Bargetz, Christian ;
Kolobov, Victor I. ;
Reich, Simeon ;
Zalas, Rafal .
OPTIMIZATION, 2019, 68 (01) :163-195
[7]  
Bauschke H. H., 2017, CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, V2nd, DOI [DOI 10.1007/978-3-319-32349-7, 10.1007/978-3-319-48311-5, 10.1007/978-3]
[8]   Linear and strong convergence of algorithms involving averaged nonexpansive operators [J].
Bauschke, Heinz H. ;
Noll, Dominikus ;
Phan, Hung M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) :1-20
[9]   A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) :248-264
[10]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426