HYPOCOERCIVITY OF PIECEWISE DETERMINISTIC MARKOV PROCESS-MONTE CARLO

被引:17
作者
Andrieu, Christophe [1 ]
Durmus, Alain [2 ]
Nusken, Nikolas [3 ]
Roussel, Julien [4 ,5 ]
机构
[1] Univ Bristol, Sch Math, Bristol, Avon, England
[2] Univ Paris Saclay, CNRS, ENS Paris Saclay, Gif Sur Yvette, France
[3] Imperial Coll London, Dept Math, London, England
[4] Ecole Ponts, Champs Sur Marne, France
[5] INRIA, Rocquencourt, France
基金
英国工程与自然科学研究理事会;
关键词
PDMCMC; geometric convergence; hypoellipticity; KINETIC-EQUATIONS; SPECTRAL GAP; ERGODICITY; EQUILIBRIUM; INEQUALITIES; CONVERGENCE; DECAY;
D O I
10.1214/20-AAP1653
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we establish L-2-exponential convergence for a broad class of piecewise deterministic Markov processes recently proposed in the context of Markov process Monte Carlo methods and covering in particular the randomized Hamiltonian Monte Carlo (Trans. Amer. Math. Soc. 367 (2015) 3807-3828; Ann. Appl. Probab. 27 (2017) 2159-2194), the zig-zag process (Ann. Statist. 47 (2019) 1288-1320) and the bouncy particle Sampler (Phys. Rev. E 85 (2012) 026703; J. Amer. Statist. Assoc. 113 (2018) 855-867). The kernel of the symmetric part of the generator of such processes is nontrivial, and we follow the ideas recently introduced in (C. R. Math. Acad. Sci. Paris 347 (2009) 511-516; Trans. Amer. Math. Soc. 367 (2015) 3807-3828) to develop a rigorous framework for hypocoercivity in a fairly general and unifying set-up, while deriving tractable estimates of the constants involved in terms of the parameters of the dynamics. As a by-product we characterize the scaling properties of these algorithms with respect to the dimension of classes of problems, therefore providing some theoretical evidence to support their practical relevance.
引用
收藏
页码:2478 / 2517
页数:40
相关论文
共 61 条
[1]  
Achleitner F., 2016, SPRINGER P MATH STAT, P1, DOI DOI 10.1007/978-3-319-32144-8_1
[2]  
ANDRIEU C., 2021, HYPOCOERCIVITY PIE S, DOI [10.1214/20-AAP1653SUPP, DOI 10.1214/20-AAP1653SUPP]
[3]   PESKUN-TIERNEY ORDERING FOR MARKOVIAN MONTE CARLO: BEYOND THE REVERSIBLE SCENARIO [J].
Andrieu, Christophe ;
Livingstone, Samuel .
ANNALS OF STATISTICS, 2021, 49 (04) :1958-1981
[4]  
Bakry D., 2014, FUNDAMENTAL PRINCIPL, DOI [10.1007/978-3-319-00227-9, DOI 10.1007/978-3-319-00227-9]
[5]   A simple proof of the Poincare inequality for a large class of probability measures including the log-concave case [J].
Bakry, Dominique ;
Barthe, Franck ;
Cattiaux, Patrick ;
Guillin, Arnaud .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 :60-66
[6]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[7]  
BIERKENS J., 2018, HIGH DIMENSIONAL SCA
[8]   ERGODICITY OF THE ZIGZAG PROCESS [J].
Bierkens, Joris ;
Roberts, Gareth O. ;
Zitt, Pierre-Andre .
ANNALS OF APPLIED PROBABILITY, 2019, 29 (04) :2266-2301
[9]  
Bobkov SG, 2003, LECT NOTES MATH, V1807, P37
[10]   Spectral gap for spherically symmetric log-concave probability measures, and beyond [J].
Bonnefont, Michel ;
Joulin, Alderic ;
Ma, Yutao .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (07) :2456-2482