The Zeta Functions of Dihypergraphs and Dihypergraph Coverings

被引:1
作者
Li, Deqiong [1 ,2 ]
Hou, Yaoping [3 ]
Liao, Yunhua [1 ,2 ]
机构
[1] Hunan Univ Technol & Business, Coll Sci, Changsha 410205, Hunan, Peoples R China
[2] Hunan Univ Technol & Business, Key Lab Hunan Prov Stat Learning & Intelligent Co, Changsha 410205, Hunan, Peoples R China
[3] Hunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Zeta function; Dihypergraph; Dihypergraph covering; CHARACTERISTIC-POLYNOMIALS; FINITE GRAPHS;
D O I
10.1007/s40840-021-01199-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As the generalization of the digraph, the directed hypergraph (dihypergraph), denoted by (H) over right arrow, is considered in this paper. First, we introduce the notions of the zeta function of (H) over right arrow and dihypergraph coverings over (H) over right arrow. Next, several expressions for the zeta function of (H) over right arrow are given, and all dihypergraph coverings over (H) over right arrow are generated by permutation voltage assignments on the incidence bipartite digraph or the edge-colored digraph of (H) over right arrow. Final, we derive two explicit decomposition formulae for the zeta function of any dihypergraph covering <(<(H)over right arrow>)over bar> over (H) over right arrow, which turn out that the zeta function of (H) over right arrow divides the zeta function of <(<(H)over right arrow>)over bar>.
引用
收藏
页码:399 / 415
页数:17
相关论文
共 24 条
  • [1] Bass H., 1992, Internat. J. Math., V3, P717, DOI DOI 10.1142/S0129167X92000357
  • [2] Brette A., 2012, HYPERGRAPH THEORY
  • [3] Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
  • [4] An algebraic approach to lifts of digraphs
    Dalfo, C.
    Fiol, M. A.
    Miller, M.
    Ryan, J.
    Siran, J.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 269 : 68 - 76
  • [5] The spectra of lifted digraphs
    Dalfo, C.
    Fiol, M. A.
    Siran, J.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 50 (04) : 419 - 426
  • [6] Dalfo C, 2017, AUSTRALAS J COMB, V69, P368
  • [7] Homomorphisms, representations and characteristic polynomials of digraphs
    Deng, Aiping
    Sato, Iwao
    Wu, Yaokun
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (2-3) : 386 - 407
  • [8] Characteristic polynomials of ramified uniform covering digraphs
    Deng, Aiping
    Sato, Iwao
    Wu, Yaokun
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (04) : 1099 - 1114
  • [9] [冯荣权 FENG Rongquan], 2008, [数学年刊. A辑, Chinese Annals of Mathematics, Ser. A], V29, P143
  • [10] Characteristic polynomials of graph coverings
    Feng, RQ
    Kwak, JH
    Lee, J
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 69 (01) : 133 - 136