The homotopy types of Sp(2)-gauge groups

被引:30
作者
Theriault, Stephen D. [1 ]
机构
[1] Univ Aberdeen, Dept Math Sci, Aberdeen AB24 3UE, Scotland
关键词
GAUGE GROUPS; SAMELSON PRODUCTS; SP(2); SU(3);
D O I
10.1215/0023608X-2010-005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are countably many equivalence classes of principal Sp(2)-bundles over S-4 classified by the integer value of the second Chern class. We show that the corresponding gauge groups G(k) have the property that if there is a homotopy equivalence G(k) Gk', then (40, k) = (40, k'), and we prove a partial converse by showing that if (40, k) = (40, k'), then G(k) and G(k)' are homotopy equivalent when localized rationally or at any prime.
引用
收藏
页码:591 / 605
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 1963, J MATH KYOTO U
[2]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[3]  
Bott R., 1960, COMMENT MATH HELV, V34, P245
[4]   Composition methods and homotopy types of the gauge groups of Sp(2) and SU(3) [J].
Choi, Younggi ;
Hirato, Yoshihiro ;
Mimura, Mamoru .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (03) :409-417
[5]   Counting homotopy types of gauge groups [J].
Crabb, MC ;
Sutherland, WA .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 :747-768
[6]   Unstable K1-group and homotopy type of certain gauge groups [J].
Hamanaka, H ;
Kono, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :149-155
[7]   Samelson products in Sp(2) [J].
Hamanaka, Hiroaki ;
Kaji, Shizuo ;
Kono, Akira .
TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (11) :1207-1212
[8]  
HARPER JR, 2002, GRAD STUDIES MATH, V49
[9]   Samelson products of SO(3) and applications [J].
Kamiyama, Yasuhiko ;
Kishimoto, Daisuke ;
Kono, Akira ;
Tsukuda, Shuichi .
GLASGOW MATHEMATICAL JOURNAL, 2007, 49 :405-409
[10]   A NOTE ON THE HOMOTOPY TYPE OF CERTAIN GAUGE GROUPS [J].
KONO, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 117 :295-297