Design and Implementation of ALU Using Graphene Nanoribbon Field-Effect Transistor and Fin Field-Effect Transistor

被引:3
|
作者
Florance, D. Rebecca [1 ]
Prabhakar, B. [1 ]
Mishra, Manoj Kumar [2 ]
机构
[1] JNTU Coll Engn, Dept Elect & Commun Engn, Jagtial, Telangana, India
[2] Salale Univ, Fitche, Ethiopia
关键词
LOGIC; CIRCUITS; ADDER;
D O I
10.1155/2022/3487853
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Arithmetic and logical unit (ALU) are the core operational programmable logic block in microprocessors, microcontrollers, and real-time-integrated circuits. The conventional ALUs were developed using complementary metal oxide semiconductor (CMOS) technology, which resulted in excessive power consumptions, path delays, and number of transistors. Therefore, this article focuses on the design and development of hybrid delay-controlled reconfigurable ALU (DCR-ALU) using field-effect transistor (FinFET) and graphene nanoribbon field-effect transistor (GnrFET) technologies. Initially, a novel carry output predictable full adder (COPFA) and carry input selectable full adders (CISFA) are developed using multiplexer selection logic; then, delay-controlled hybrid adder (DCHA) and delay-controlled hybrid subtractor (DCHS) are developed using these full adders. In addition, a unified delay-controlled hybrid adder and subtractor (DCHAS) is developed by combining these DCHA and DCHS. Further, a delay controller array multiplier (DCAM) also developed using DCHA modules. Finally, DCR-ALU is developed by adopting the DCHAS, DCAM, and logical operations. The obtained simulation results shows that the proposed nanotechnology-based models outperformed the conventional adders and subtractors in terms of area, power, and delay reduction.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Graphene nanoribbon field-effect transistor at high bias
    Mahdiar Ghadiry
    Razali Ismail
    Mehdi Saeidmanesh
    Mohsen Khaledian
    Asrulnizam Abd Manaf
    Nanoscale Research Letters, 9
  • [2] A Review of Graphene Nanoribbon Field-Effect Transistor Structures
    Lone, Sanna
    Bhardwaj, Anil
    Pandit, Amit Kant
    Gupta, Sumeet
    Mahajan, Shubham
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (06) : 3169 - 3186
  • [3] A Review of Graphene Nanoribbon Field-Effect Transistor Structures
    Sanna Lone
    Anil Bhardwaj
    Amit Kant Pandit
    Sumeet Gupta
    Shubham Mahajan
    Journal of Electronic Materials, 2021, 50 : 3169 - 3186
  • [4] Graphene antidot nanoribbon tunnel field-effect transistor
    Xiao, Zhixing
    MICRO & NANO LETTERS, 2022, 17 (08) : 169 - 174
  • [5] Graphene nanoribbon field-effect transistor at high bias
    Ghadiry, Mahdiar
    Ismail, Razali
    Saeidmanesh, Mehdi
    Khaledian, Mohsen
    Abd Manaf, Asrulnizam
    NANOSCALE RESEARCH LETTERS, 2014, 9
  • [6] Super tiny nanoscale graphene nanoribbon field-effect transistor
    Yi Zhijie
    Shao Qingyi
    Zhang Juan
    CHINESE JOURNAL OF PHYSICS, 2019, 59 : 572 - 577
  • [7] Graphene Junction Field-Effect Transistor
    Ou, Tzu-Min
    Borsa, Tomoko
    Van Zeghbroeck, Bart
    2015 73RD ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2015, : 139 - 140
  • [8] The Sub-Band Effect on the Graphene Nanoribbon Based Field-Effect Transistor
    Kiat, Wong King
    Ahmadi, M. Taghi
    Ismail, Razali
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2012, 7 (04) : 361 - 365
  • [9] Graphene Field-Effect Transistor for Biosensor
    Matsumoto, Kazuhiko
    Hayashi, Ryota
    Kanai, Yasushi
    Inoue, Koichi
    Ono, Takao
    2016 23RD INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES (AM-FPD), 2016, : 45 - 46
  • [10] Locally Defect-Engineered Graphene Nanoribbon Field-Effect Transistor
    Owlia, Hadi
    Keshavarzi, Parviz
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (09) : 3769 - 3775