机构:
S Carolina State Univ, Sch Engn Technol & Sci, SETS, Orangeburg, SC 29117 USAS Carolina State Univ, Sch Engn Technol & Sci, SETS, Orangeburg, SC 29117 USA
Swain, NK
[1
]
Anderson, JA
论文数: 0引用数: 0
h-index: 0
机构:
S Carolina State Univ, Sch Engn Technol & Sci, SETS, Orangeburg, SC 29117 USAS Carolina State Univ, Sch Engn Technol & Sci, SETS, Orangeburg, SC 29117 USA
Anderson, JA
[1
]
Basher, AMH
论文数: 0引用数: 0
h-index: 0
机构:
S Carolina State Univ, Sch Engn Technol & Sci, SETS, Orangeburg, SC 29117 USAS Carolina State Univ, Sch Engn Technol & Sci, SETS, Orangeburg, SC 29117 USA
Basher, AMH
[1
]
机构:
[1] S Carolina State Univ, Sch Engn Technol & Sci, SETS, Orangeburg, SC 29117 USA
来源:
SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION VII
|
1998年
/
3374卷
关键词:
fuzz logic;
sensors;
sensor integration;
TUTSIM;
D O I:
10.1117/12.327113
中图分类号:
V [航空、航天];
学科分类号:
08 ;
0825 ;
摘要:
In multiple-sensor fusion several sensors acquire the same information, and thereby increase the reliability and accuracy of the information through a systematic process of combination of the sensory data obtained from different sources. The accuracy of the sensory data depends upon the precision of sensor and the environmental states in which the sensor operates. Most of the existing sensor integration systems (SIS) use some form of statistical techniques and hence lack the flexibility to change or replace inaccurate sensor(s). This paper presents an Intelligent Sensor Integrated System (ISIS) approach that uses the knowledge database of the sensors and allows for the changing or replacing of sensor(s). This proposed system uses fuzzy logic to achieve this objective.