Training saturation in layerwise quantum approximate optimization

被引:35
作者
Campos, E. [1 ]
Rabinovich, D. [1 ]
Akshay, V [1 ]
Biamonte, J. [1 ]
机构
[1] Skolkovo Inst Sci & Technol, 3 Nobel St, Moscow 121205, Russia
关键词
D O I
10.1103/PhysRevA.104.L030401
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The quantum approximate optimization algorithm (QAOA) is the most studied gate-based variational quantum algorithm today. We train QAOA one layer at a time to maximize overlap with an n qubit target state. Doing so we discovered that such training always saturates-called training saturation-at some depth p*, meaning that past a certain depth, overlap cannot be improved by adding subsequent layers. We formulate necessary conditions for saturation. Numerically, we find layerwise QAOA reaches its maximum overlap at depth p* = n for the problem of state preparation. The addition of coherent dephasing errors to training removes saturation, recovering robustness to layerwise training. This study sheds new light on the performance limitations and prospects of QAOA.
引用
收藏
页数:7
相关论文
共 35 条
[1]   Parameter concentrations in quantum approximate optimization [J].
Akshay, V ;
Rabinovich, D. ;
Campos, E. ;
Biamonte, J. .
PHYSICAL REVIEW A, 2021, 104 (01)
[2]   Reachability Deficits in Quantum Approximate Optimization [J].
Akshay, V ;
Philathong, H. ;
Morales, M. E. S. ;
Biamonte, J. D. .
PHYSICAL REVIEW LETTERS, 2020, 124 (09)
[3]   Variational simulation of Schwinger's Hamiltonian with polarization qubits [J].
Borzenkova, O. V. ;
Struchalin, G. I. ;
Kardashin, A. S. ;
Krasnikov, V. V. ;
Skryabin, N. N. ;
Straupe, S. S. ;
Kulik, S. P. ;
Biamonte, J. D. .
APPLIED PHYSICS LETTERS, 2021, 118 (14)
[4]   Optimal Protocols in Quantum Annealing and Quantum Approximate Optimization Algorithm Problems [J].
Brady, Lucas T. ;
Baldwin, Christopher L. ;
Bapat, Aniruddha ;
Kharkov, Yaroslav ;
Gorshkov, Alexey, V .
PHYSICAL REVIEW LETTERS, 2021, 126 (07)
[5]   Obstacles to Variational Quantum Optimization from Symmetry Protection [J].
Bravyi, Sergey ;
Kliesch, Alexander ;
Koenig, Robert ;
Tang, Eugene .
PHYSICAL REVIEW LETTERS, 2020, 125 (26)
[6]   Correcting coherent errors with surface codes [J].
Bravyi, Sergey ;
Englbrecht, Matthias ;
Konig, Robert ;
Peard, Nolan .
NPJ QUANTUM INFORMATION, 2018, 4
[7]   Understanding Quantum Control Processor Capabilities and Limitations through Circuit Characterization [J].
Butko, Anastasiia ;
Michelogiannakis, George ;
Williams, Samuel ;
Iancu, Costin ;
Donofrio, David ;
Shalf, John ;
Carter, Jonathan ;
Siddiqi, Irfan .
2020 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2020), 2020, :66-75
[8]   Abrupt transitions in variational quantum circuit training [J].
Campos, Ernesto ;
Nasrallah, Aly ;
Biamonte, Jacob .
PHYSICAL REVIEW A, 2021, 103 (03)
[9]   Noise-Assisted Quantum Autoencoder [J].
Cao, Chenfeng ;
Wang, Xin .
PHYSICAL REVIEW APPLIED, 2021, 15 (05)
[10]   Machine Learning of Noise-Resilient Quantum Circuits [J].
Cincio, Lukasz ;
Rudinger, Kenneth ;
Sarovar, Mohan ;
Coles, Patrick J. .
PRX QUANTUM, 2021, 2 (01)