EXISTENCE OF SOLUTIONS TO QUASILINEAR SCHRODINGER EQUATIONS WITH INDEFINITE POTENTIAL

被引:0
作者
Shen, Zupei [1 ]
Han, Zhiqing [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Quasilinear Schrodinger equation; local linking; fountain theorem; indefinite potential; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; SOLITON-SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence and multiplicity of solutions of the quasilinear Schrodinger equation -u '' + V(x)u - ( broken vertical bar u broken vertical bar(2))'' u = f (u) on R, where the potential V allows sign changing and the nonlinearity satisfies conditions weaker than the classical Ambrosetti-Rabinowitz condition. By a local linking theorem and the fountain theorem, we obtain the existence and multiplicity of solutions for the equation.
引用
收藏
页数:9
相关论文
共 14 条
[1]   On the existence and concentration of positive solutions to a class of quasilinear elliptic problems on R [J].
Alves, Claudianor O. ;
Miyagaki, Olimpio H. ;
Monari Soares, Sergio H. .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (14-15) :1784-1795
[2]   Non-autonomous perturbations for a class of quasilinear elliptic equations on R [J].
Alves, M. J. ;
Carriao, P. C. ;
Miyagaki, O. H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :186-203
[3]  
Ambrosetti A, 2003, DISCRETE CONT DYN-A, V9, P55
[4]   INFINITELY MANY SOLUTIONS OF A SYMMETRICAL DIRICHLET PROBLEM [J].
BARTSCH, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (10) :1205-1216
[5]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[6]   Standing waves with large frequency for 4-superlinear Schrodinger-Poisson systems [J].
Chen, Huayang ;
Liu, Shibo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (01) :43-53
[7]   Multibump solutions for quasilinear elliptic equations [J].
Liu, Jia-Quan ;
Wang, Zhi-Qiang ;
Guo, Yu-Xia .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) :4040-4102
[8]   Solutions for quasilinear Schrodinger equations via the Nehari method [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (5-6) :879-901
[9]   Soliton solutions for quasilinear Schrodinger equations, I [J].
Liu, JQ ;
Wang, ZQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) :441-448
[10]   Soliton solutions for quasilinear Schrodinger equations, II [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) :473-493