Generalization and reverses of the left Fejer inequality for convex functions

被引:0
作者
Dragomir, S. S. [1 ,2 ]
机构
[1] Victoria Univ, Math Sch Engn & Sci, POB 14428, Melbourne, MC 8001, Australia
[2] Univ Witwatersrand, Sch Computat & Appl Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2017年 / 10卷 / 06期
关键词
Convex functions; integral inequalities; Jensen's type inequalities; Fejer type inequalities; Lebesgue integral; Hermite-Hadamard type inequalities; special means; INTEGRAL-INEQUALITIES; HADAMARD-TYPE;
D O I
10.22436/jnsa.010.06.35
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish a generalization of the left Fejer inequality for general Lebesgue integral on measurable spaces as well as various upper bounds for the difference 1/integral(b)(a) g (x) dx integral(b)(a) h(x) g (x) dx - h (a+b/2), where h : [a, b] -> R is a convex function and g : [a, b] -> [0, infinity) is an integrable weight. Applications for discrete means and Hermite-Hadamard type inequalities are also provided. (C) 2017 All rights reserved.
引用
收藏
页码:3231 / 3244
页数:14
相关论文
共 11 条
  • [1] [Anonymous], 1999, U BEOGRAD PUBL ELE M
  • [2] Azpeitia A.G., 1994, Rev. Colomb. Mat, V28, P7
  • [3] Dragomir S. S., 2000, RGMIA Monographs
  • [4] Fejr L., 1906, Anz Ungar. Akad. Wiss., V24, P369
  • [5] Sharp integral inequalities of the Hermite-Hadamard type
    Guessab, A
    Schmeisser, G
    [J]. JOURNAL OF APPROXIMATION THEORY, 2002, 115 (02) : 260 - 288
  • [6] Kikianty E, 2010, MATH INEQUAL APPL, V13, P1
  • [7] P-functions, quasi-convex functions, and Hadamard-type inequalities
    Pearce, CEM
    Rubinov, AM
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (01) : 92 - 104
  • [8] Pecaric J, 2003, FUNCTIONAL EQUATIONS, INEQUALITIES AND APPLICATIONS, P105
  • [9] TOADER GH., 1994, STUD U BABES BOLYAI, V39, P27
  • [10] Yang G. S., 1997, Tamkang. J. Math, V28, P33