Hermite-Hadamard Type Inequalities For Quasi-Convex Functions Via New Fractional Conformable Integrals

被引:1
作者
Set, Erhan [1 ]
Gozpinar, Abdurrahman [1 ]
Demirci, Filiz [1 ]
机构
[1] Ordu Univ, Fac Sci & Arts, Dept Math, Ordu, Turkey
来源
1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018) | 2018年 / 1991卷
关键词
D O I
10.1063/1.5047875
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main issue addressed in this paper is to prove generalization of Hermite-Hadamard type inequalities for quasiconvex functions via "new fractional conformable integrals "defined by Jarad et. al. [6]. The relevant connections of some results presented here with those earlier ones are also pointed out.
引用
收藏
页数:5
相关论文
共 14 条
[1]  
Belarbi S., 2009, J. Ineq. Pure and Appl. Math, V10
[2]  
Dragomir S. S., 1995, Soochow J. Math, V21, P335
[3]   Quasi-convex functions and Hadamard's inequality [J].
Dragomir, SS ;
Pearce, CEM .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 57 (03) :377-385
[4]  
Gorenflo R., 1997, Fractional calculus: integral and differential equations of fractional order, DOI DOI 10.1007/978-3-7091-2664-6_5
[5]  
Gozpinar A., 2018, SOME HERMITE HADAMAR
[6]   On a new class of fractional operators [J].
Jarad, Fahd ;
Ugurlu, Ekin ;
Abdeljawad, Thabet ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[7]   New approach to a generalized fractional integral [J].
Katugampola, Udita N. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :860-865
[8]  
Kilbas A. A., 2001, J KOREAN MATH SOC, V386, P1191
[9]  
Ozdemir M. E., 2013, MATH COMPUTER SCI SE, V40, P167
[10]  
Pearce C. E. M., 2004, NONLINEAR OPTIMIZATI, V74, P403