Multiplicity of solutions for Schrodinger-Poisson system with critical exponent in R3

被引:2
作者
Peng, Xueqin [1 ]
Jia, Gao [1 ]
Huang, Chen [2 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 03期
基金
中国国家自然科学基金;
关键词
Schrodinger-Poisson system; critical exponent; variational method; genus; KLEIN-GORDON-MAXWELL; POSITIVE SOLUTIONS; STATE SOLUTIONS; THOMAS-FERMI; GROUND-STATE; EQUATIONS; ATOMS;
D O I
10.3934/math.2021126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Schrodinger-Poisson system with critical exponent {-Delta u - k(x)phi u = lambda h(x)vertical bar u vertical bar(p-2)u + s(x)vertical bar u vertical bar(4)u; x epsilon R-3, -Delta phi = k(x)u(2), x epsilon R-3, where 1 < p < 2 and lambda > 0: Under suitable conditions on k, h and s, we show that there exists lambda > 0 such that the above problem possesses infinitely many solutions with negative energy for each lambda epsilon (0, lambda*). Moreover, we prove the existence of infinitely many solutions with positive energy. The main tools are the concentration compactness principle, Z(2) index theory and Fountain Theorem. These results extend some existing results in the literature.
引用
收藏
页码:2059 / 2077
页数:19
相关论文
共 27 条
[1]   Schrodinger-Poisson equations without Ambrosetti-Rabinowitz condition [J].
Alves, Claudianor O. ;
Soares Souto, Marco Aurelio ;
Soares, Sergio H. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) :584-592
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 2007, MEASURE THEORY, DOI DOI 10.1007/978-3-540-34514-5
[4]  
[Anonymous], 1986, C BOARD MATH SCI
[5]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[6]  
Benci V., 1998, Topol Methods Nonlinear Anal, V11, P283, DOI DOI 10.12775/TMNA.1998.019
[7]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[8]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[9]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[10]   Non-existence results for the coupled Klein-Gordon-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
ADVANCED NONLINEAR STUDIES, 2004, 4 (03) :307-322