It is an open question whether every normal affine surface V over C admits an effective action of a maximal torus T = C*(n) (n <= 2) such that any other effective C*-action is conjugate to a subtorus of T in Aut(V). We prove that this holds indeed in the following cases: (a) the Makar-Limanov invariant ML(V) not equal C is nontrivial, (b) V is a toric surface, (c) V = P-1 x P-1\Delta, where Delta is the diagonal, and (d) V = P-2\Q, where Q is a nonsingular quadric. In case (a) this generalizes a result of Bertin for smooth surfaces, whereas (b) was previously known for the case of the affine plane (Gutwirth [Gut]) and (d) is a result of Danilov-Gizatullin [DG] and Doebeli [Do].
机构:
Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne, Tyne & Wear, EnglandNewcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne, Tyne & Wear, England
机构:
Univ Fed Rural Rio de Janeiro, Inst Multidisciplinar, BR-26210210 Rio De Janeiro, BrazilUniv Fed Rural Rio de Janeiro, Inst Multidisciplinar, BR-26210210 Rio De Janeiro, Brazil
机构:
Saitama Univ, Fac Sci, Dept Math, Saitama 3388570, JapanSaitama Univ, Fac Sci, Dept Math, Saitama 3388570, Japan
Kishimoto, Takashi
Prokhorov, Yuri
论文数: 0引用数: 0
h-index: 0
机构:
VA Steklov Math Inst, Moscow 119991, Russia
GU HSE, Lab Algebra Geometry, Moscow 117312, RussiaSaitama Univ, Fac Sci, Dept Math, Saitama 3388570, Japan
Prokhorov, Yuri
Zaidenberg, Mikhail
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble 1, CNRS UJF, UMR 5582, Inst Fourier, F-38402 St Martin Dheres, FranceSaitama Univ, Fac Sci, Dept Math, Saitama 3388570, Japan