On the uniqueness of C*-actions on affine surfaces

被引:0
|
作者
Flenner, H [1 ]
Zaidenberg, M [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
来源
AFFINE ALGEBRAIC GEOMETRY | 2005年 / 369卷
关键词
C*-action; C+-action; graded algebra; affine surface;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is an open question whether every normal affine surface V over C admits an effective action of a maximal torus T = C*(n) (n <= 2) such that any other effective C*-action is conjugate to a subtorus of T in Aut(V). We prove that this holds indeed in the following cases: (a) the Makar-Limanov invariant ML(V) not equal C is nontrivial, (b) V is a toric surface, (c) V = P-1 x P-1\Delta, where Delta is the diagonal, and (d) V = P-2\Q, where Q is a nonsingular quadric. In case (a) this generalizes a result of Bertin for smooth surfaces, whereas (b) was previously known for the case of the affine plane (Gutwirth [Gut]) and (d) is a result of Danilov-Gizatullin [DG] and Doebeli [Do].
引用
收藏
页码:97 / 111
页数:15
相关论文
共 50 条
  • [41] Locally symmetric minimal affine Lagrangian surfaces in C2
    Barbara Opozda
    Monatshefte für Mathematik, 2009, 156 : 357 - 370
  • [42] Affine Anosov Representations and Proper Actions
    Ghosh, Sourav
    Treib, Nicolaus
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (16) : 14334 - 14367
  • [43] K-THEORY OF AFFINE ACTIONS
    Waldron, James
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 301 (02) : 639 - 666
  • [44] On the deformation complex of homotopy affine actions
    Hoefel, Eduardo
    Livernet, Muriel
    Quesney, Alexandre
    ADVANCES IN MATHEMATICS, 2019, 358
  • [45] AFFINE ACTIONS WITH HITCHIN LINEAR PART
    Danciger, Jeffrey
    Zhang, Tengren
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2019, 29 (05) : 1369 - 1439
  • [46] On affine group actions on Stein manifolds
    Coutinho, Helisson
    FORUM MATHEMATICUM, 2012, 24 (01) : 211 - 222
  • [47] Fuchsian affine actions of surface groups
    Labourie, F
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 59 (01) : 15 - 31
  • [48] Unipotent group actions on affine varieties
    Derksen, H.
    van den Essen, A.
    Finston, D. R.
    Maubach, S.
    JOURNAL OF ALGEBRA, 2011, 336 (01) : 200 - 208
  • [49] Torus actions on quotients of affine spaces
    Brecan, Ana-Maria
    Franzen, Hans
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2023, 7
  • [50] Ga-ACTIONS ON AFFINE CONES
    Kishimoto, Takashi
    Prokhorov, Yuri
    Zaidenberg, Mikhail
    TRANSFORMATION GROUPS, 2013, 18 (04) : 1137 - 1153