On the uniqueness of C*-actions on affine surfaces

被引:0
|
作者
Flenner, H [1 ]
Zaidenberg, M [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
来源
AFFINE ALGEBRAIC GEOMETRY | 2005年 / 369卷
关键词
C*-action; C+-action; graded algebra; affine surface;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is an open question whether every normal affine surface V over C admits an effective action of a maximal torus T = C*(n) (n <= 2) such that any other effective C*-action is conjugate to a subtorus of T in Aut(V). We prove that this holds indeed in the following cases: (a) the Makar-Limanov invariant ML(V) not equal C is nontrivial, (b) V is a toric surface, (c) V = P-1 x P-1\Delta, where Delta is the diagonal, and (d) V = P-2\Q, where Q is a nonsingular quadric. In case (a) this generalizes a result of Bertin for smooth surfaces, whereas (b) was previously known for the case of the affine plane (Gutwirth [Gut]) and (d) is a result of Danilov-Gizatullin [DG] and Doebeli [Do].
引用
收藏
页码:97 / 111
页数:15
相关论文
共 50 条
  • [1] Normal affine surfaces with C*-actions
    Flenner, H
    Zaidenberg, M
    OSAKA JOURNAL OF MATHEMATICS, 2003, 40 (04) : 981 - 1009
  • [2] Uniqueness of C*- and C+-actions on Gizatullin surfaces
    Flenner, Hubert
    Kaliman, Shulim
    Zaidenberg, Mikhail
    TRANSFORMATION GROUPS, 2008, 13 (02) : 305 - 354
  • [3] SMOOTH AFFINE SURFACES WITH NON-UNIQUE C*-ACTIONS
    Flenner, Hubert
    Kaliman, Shulim
    Zaidenberg, Mikhail
    JOURNAL OF ALGEBRAIC GEOMETRY, 2011, 20 (02) : 329 - 398
  • [4] Algebraic torus actions on affine algebraic surfaces
    Tanimoto, R
    JOURNAL OF ALGEBRA, 2005, 285 (01) : 73 - 97
  • [5] QUASI-AFFINE SURFACES WITH GA-ACTIONS
    FAUNTLEROY, A
    MAGID, AR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 68 (03) : 265 - 270
  • [6] Acyclic curves and group actions on affine toric surfaces
    Arzhantsev, Ivan
    Zaidenberg, Mikhail
    AFFINE ALGEBRAIC GEOMETRY, 2013, : 1 - 41
  • [7] Proper affine actions and geodesic flows of hyperbolic surfaces
    Goldman, William M.
    Labourie, Francois
    Margulis, Gregory
    ANNALS OF MATHEMATICS, 2009, 170 (03) : 1051 - 1083
  • [8] Actions of C* and C+ on affine algebraic varieties
    Kaliman, Shulim
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 629 - 654
  • [9] Free C+-actions on affine threefolds
    Kraft, H
    AFFINE ALGEBRAIC GEOMETRY, 2005, 369 : 165 - 175
  • [10] Affine surfaces with AK(S) = C
    Bandman, T
    Makar-Limanov, L
    MICHIGAN MATHEMATICAL JOURNAL, 2001, 49 (03) : 567 - 582