FBF1 deficiency promotes beiging and healthy expansion of white adipose tissue

被引:24
|
作者
Zhang, Yingyi [1 ]
Hao, Jielu [1 ]
Tarrago, Mariana G. [4 ,5 ,6 ]
Warner, Gina M. [4 ,5 ,6 ]
Giorgadze, Nino [4 ]
Wei, Qing [1 ,7 ]
Huang, Yan [1 ]
He, Kai [1 ]
Chen, Chuan [1 ]
Peclat, Thais R. [4 ,5 ,6 ]
White, Thomas A. [4 ]
Ling, Kun [1 ]
Tchkonia, Tamar [4 ]
Kirkland, James L. [4 ]
Chini, Eduardo N. [4 ,5 ,6 ]
Hu, Jinghua [1 ,2 ,3 ]
机构
[1] Mayo Clin, Dept Biochem & Mol Biol, Rochester, MN 55905 USA
[2] Mayo Clin, Div Nephrol & Hypertens, Rochester, MN 55905 USA
[3] Mayo Clin, Robert M & Billie Kelley Pirnie Translat Polycyst, Rochester, MN 55905 USA
[4] Mayo Clin, Robert & Arlene Kogod Ctr Aging, Rochester, MN USA
[5] Mayo Clin, Dept Anesthesiol, Rochester, MN USA
[6] Mayo Clin, Dept Physiol & Biomed Engn, Rochester, MN USA
[7] Chinese Acad Sci, Ctr Energy Metab & Reprod, Inst Biomed & Biotechnol, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
来源
CELL REPORTS | 2021年 / 36卷 / 05期
基金
美国国家卫生研究院;
关键词
PRIMARY CILIUM; TRANSITION FIBERS; CILIARY MEMBRANE; FAT; PROTEINS; COMPLEX; OBESITY; DIFFERENTIATION; INTRAFLAGELLAR; ADIPOGENESIS;
D O I
10.1016/j.celrep.2021.109481
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Preadipocytes dynamically produce sensory cilia. However, the role of primary cilia in preadipocyte differentiation and adipose homeostasis remains poorly understood. We previously identified transition fiber component FBF1 as an essential player in controlling selective cilia import. Here, we establish Fbf1(tm1a/tm1a) mice and discover that Fbf1(tm1a/tm1a) mice develop severe obesity, but surprisingly, are not predisposed to adverse metabolic complications. Obese Fbf1(tm1a/tm1a) mice possess unexpectedly healthy white fat tissue characterized by spontaneous upregulated beiging, hyperplasia but not hypertrophy, and low inflammation along the lifetime. Mechanistically, FBF1 governs preadipocyte differentiation by constraining the beiging program through an AKAP9-dependent, cilia-regulated PKA signaling, while recruiting the BBS chaperonin to transition fibers to suppress the hedgehog signaling-dependent adipogenic program. Remarkably, obese Fbf1(tm1a/tm1a) mice further fed a high-fat diet are protected from diabetes and premature death. We reveal a central role for primary cilia in the fate determination of preadipocytes and the generation of metabolically healthy fat tissue.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Increased cGMP promotes healthy expansion and browning of white adipose tissue
    Mitschke, Michaela M.
    Hoffmann, Linda S.
    Gnad, Thorsten
    Scholz, Daniela
    Kruithoff, Katja
    Mayer, Peter
    Haas, Bodo
    Sassmann, Antonia
    Pfeifer, Alexander
    Kilic, Ana
    FASEB JOURNAL, 2013, 27 (04) : 1621 - 1630
  • [2] Activation of METTL3 Promotes White Adipose Tissue Beiging and Combats Obesity
    Xie, Renxiang
    Yan, Sujun
    Zhou, Xiaoling
    Gao, Yunyi
    Qian, Yu
    Hou, Jingyu
    Chen, Zhanghui
    Lai, Kairan
    Gao, Xiangwei
    Wei, Saisai
    DIABETES, 2023, 72 (08) : 1083 - 1094
  • [3] Adipocyte Inflammation Is Essential for Healthy Adipose Tissue Expansion and Remodeling
    Asterholm, Ingrid Wernstedt
    Tao, Caroline
    Morley, Thomas S.
    Wang, Qiong A.
    Delgado-Lopez, Fernando
    Wang, Zhao V.
    Scherer, Philipp E.
    CELL METABOLISM, 2014, 20 (01) : 103 - 118
  • [4] Role of glucocorticoid receptor (GR) in white adipose tissue beiging
    Martin, Florencia M.
    Alzamendi, Ana
    Harnichar, Alejandro E.
    Castrogiovanni, Daniel
    Zubiria, Maria Guillermina
    Spinedi, Eduardo
    Giovambattista, Andres
    LIFE SCIENCES, 2023, 322
  • [5] Adiponectin stimulates Sca1+CD34--adipocyte precursor cells associated with hyperplastic expansion and beiging of brown and white adipose tissue
    Bauza-Thorbrugge, Marco
    Vujicic, Milica
    Chanclon, Belon
    Palsdottir, Vilborg
    Pillon, Nicolas J.
    Benrick, Anna
    Asterholm, Ingrid Wernstedt
    METABOLISM-CLINICAL AND EXPERIMENTAL, 2024, 151
  • [6] Maresin 1 activates brown adipose tissue and promotes browning of white adipose tissue in mice
    Laiglesia, Laura M.
    Escote, Xavier
    Sainz, Neira
    Felix-Soriano, Elisa
    Santamaria, Eva
    Collantes, Maria
    Fernandez-Galilea, Marta
    Colon-Mesa, Ignacio
    Martinez-Fernandez, Leyre
    Quesada-Lopez, Tania
    Quesada-Vazquez, Sergio
    Rodriguez-Ortigosa, Carlos
    Arbones-Mainar, Jose M.
    Valverde, Angela M.
    Martinez, J. Alfredo
    Dalli, Jesmond
    Herrero, Laura
    Lorente-Cebrian, Silvia
    Villarroya, Francesc
    Moreno-Aliaga, Maria J.
    MOLECULAR METABOLISM, 2023, 74
  • [7] Prep1 deficiency improves metabolic response in white adipose tissue
    Liotti, Antonietta
    Cabaro, Serena
    Cimmino, Ilaria
    Ricci, Serena
    Procaccini, Claudio
    Paciello, Orlando
    Raciti, Gregory A.
    Spinelli, Rosa
    Iossa, Susanna
    Matarese, Giuseppe
    Miele, Claudia
    Formisano, Pietro
    Beguinot, Francesco
    Oriente, Francesco
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2018, 1863 (05): : 515 - 525
  • [8] Inhibition of hedgehog signaling promotes white adipose tissue browning
    Zhang, Zhuo
    Zhang, Xiao Xiao
    Liu, Zhi Feng
    Guo, Xi Rong
    Cui, Xian Wei
    Ji, Chen Bo
    Zhong, Hong
    Chi, Xia
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2020, 518
  • [9] Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors
    Liu, Wenjing
    Li, Dahui
    Cao, Handi
    Li, Haoyun
    Wang, Yu
    BIOLOGICAL CHEMISTRY, 2021, 402 (02) : 123 - 132
  • [10] Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals
    Zhu, Yi
    Gao, Yong
    Tao, Caroline
    Shao, Mengle
    Zhao, Shangang
    Huang, Wei
    Yao, Ting
    Johnson, Joshua A.
    Liu, Tiemin
    Cypess, Aaron M.
    Gupta, Olga
    Holland, William L.
    Gupta, Rana K.
    Spray, David C.
    Tanowitz, Herbert B.
    Cao, Lei
    Lynes, Matthew D.
    Tseng, Yu-Hua
    Elmquist, Joel K.
    Williams, Kevin W.
    Lin, Hua V.
    Scherer, Philipp E.
    CELL METABOLISM, 2016, 24 (03) : 420 - 433