A note on the unification of the Akaike information criterion

被引:24
|
作者
Shi, PD
Tsai, CL [1 ]
机构
[1] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
[2] Peking Univ, Beijing 100871, Peoples R China
关键词
Akaike information criterion; corrected Akaike information criterion; generalized Akaike information criteria; Kullback-Leibler information; robust model selection;
D O I
10.1111/1467-9868.00139
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
To measure the distance between a robust function evaluated under the true regression model and under a fitted model, we propose generalized Kullback-Leibler information. Using this generalization we have developed three robust model selection criteria, AICR*, AICCR* and AICCR, that allow the selection of candidate models that not only fit the majority of the data but also take into account non-normally distributed errors. The AICR* and AICCR criteria can unify most existing Akaike information criteria; three examples of such unification are given. Simulation studies are presented to illustrate the relative performance of each criterion.
引用
收藏
页码:551 / 558
页数:8
相关论文
共 50 条
  • [31] Hyperspectral estimation of plant nitrogen content based on Akaike's information criterion
    Yang F.
    Dai H.
    Feng H.
    Yang G.
    Li Z.
    Chen Z.
    Feng, Haikuan (fenghaikuan123@163.com), 1600, Chinese Society of Agricultural Engineering (32): : 161 - 167
  • [32] Assessment of aero-engine service reliability based on Akaike information criterion
    Xie Jing
    Chen Qinggui
    Qin Haiqin
    Xie Zhenbo
    Cai Na
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 632 - 635
  • [33] An improved sparse identification of nonlinear dynamics with Akaike information criterion and group sparsity
    Xin Dong
    Yu-Long Bai
    Yani Lu
    Manhong Fan
    Nonlinear Dynamics, 2023, 111 : 1485 - 1510
  • [34] Choosing the optimal fit function: Comparison of the Akaike information criterion and the F-test
    Glatting, Gerhard
    Kletting, Peter
    Reske, Sven N.
    Hohl, Kathrin
    Ring, Christina
    MEDICAL PHYSICS, 2007, 34 (11) : 4285 - 4292
  • [35] Repetitive model refinement for structural health monitoring using efficient Akaike information criterion
    Lin, Jeng-Wen
    SMART STRUCTURES AND SYSTEMS, 2015, 15 (05) : 1329 - 1344
  • [36] On Explainable Flexible Fuzzy Recommender and Its Performance Evaluation Using the Akaike Information Criterion
    Rutkowski, Tomasz
    Lapa, Krystian
    Jaworski, Maciej
    Nielek, Radoslaw
    Rutkowska, Danuta
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV, 2019, 1142 : 717 - 724
  • [37] Singular Value Decomposition and Akaike Information Criterion based Through Wall Image Enhancement
    Riaz, Muhammad Mohsin
    Ghafoor, Abdul
    Sreeram, Victor
    2013 IEEE 77TH VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2013,
  • [38] Application of Akaike information criterion in selecting random error model for inertial measurement unit
    Zhu Y.
    Chang G.
    Yang M.
    Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2024, 32 (02): : 180 - 186
  • [39] Akaike information criterion should not be a "test" of geographical prediction accuracy in ecological niche modelling
    Velasco, Julian A.
    Gonzalez-Salazar, Constantino
    ECOLOGICAL INFORMATICS, 2019, 51 : 25 - 32
  • [40] ADAPTION OF AKAIKE INFORMATION CRITERION UNDER LEAST SQUARES FRAMEWORKS FOR COMPARISON OF STOCHASTIC MODELS
    Banks, H. T.
    Joyner, Michele L.
    QUARTERLY OF APPLIED MATHEMATICS, 2019, 77 (04) : 831 - 859