A note on the unification of the Akaike information criterion

被引:24
|
作者
Shi, PD
Tsai, CL [1 ]
机构
[1] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
[2] Peking Univ, Beijing 100871, Peoples R China
关键词
Akaike information criterion; corrected Akaike information criterion; generalized Akaike information criteria; Kullback-Leibler information; robust model selection;
D O I
10.1111/1467-9868.00139
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
To measure the distance between a robust function evaluated under the true regression model and under a fitted model, we propose generalized Kullback-Leibler information. Using this generalization we have developed three robust model selection criteria, AICR*, AICCR* and AICCR, that allow the selection of candidate models that not only fit the majority of the data but also take into account non-normally distributed errors. The AICR* and AICCR criteria can unify most existing Akaike information criteria; three examples of such unification are given. Simulation studies are presented to illustrate the relative performance of each criterion.
引用
收藏
页码:551 / 558
页数:8
相关论文
共 50 条
  • [21] Akaike information criterion to select well-fit resist models
    Burbine, Andrew
    Fryer, David
    Strurtevant, John
    DESIGN-PROCESS-TECHNOLOGY CO-OPTIMIZATION FOR MANUFACTURABILITY IX, 2015, 9427
  • [22] Radio Frequency Transient Segment Detection Based on Akaike Information Criterion
    Ajouat, Saleh Abulgasem
    Tezel, Necmi Serkan
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2022, 25 (04): : 1681 - 1686
  • [23] Ground penetrating radar data processing using Akaike information criterion
    Jendo, Jacek
    2017 RADIOELECTRONIC SYSTEMS CONFERENCE, 2018, 10715
  • [24] Model Selection and Psychological Theory: A Discussion of the Differences Between the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)
    Vrieze, Scott I.
    PSYCHOLOGICAL METHODS, 2012, 17 (02) : 228 - 243
  • [25] An Akaike-type information criterion for model selection under inequality constraints
    Kuiper, R. M.
    Hoijtink, H.
    Silvapulle, M. J.
    BIOMETRIKA, 2011, 98 (02) : 495 - 501
  • [26] An Adaptive SSUKF Based on Akaike Information Criterion to Optimize the Distribution Entropy of the Innovation
    Chen, Guangwu
    Zhou, Xin
    Si, Yongbo
    IEEE SENSORS JOURNAL, 2025, 25 (04) : 6055 - 6066
  • [27] Order Estimation and Screening of Apneic Snore Sound Using the Akaike Information Criterion
    Inoue, Kunihiko
    Akutagawa, Masatake
    Emoto, Takahiro
    Abeyratne, Udantha
    Uemura, Tetsuya
    Nagashino, Hirofumi
    Kinouchi, Yohsuke
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6, 2007, 14 : 1135 - +
  • [28] An improved sparse identification of nonlinear dynamics with Akaike information criterion and group sparsity
    Dong, Xin
    Bai, Yu-Long
    Lu, Yani
    Fan, Manhong
    NONLINEAR DYNAMICS, 2023, 111 (02) : 1485 - 1510
  • [29] Akaike Information Criterion-based Objective for Belief Rule Base Optimization
    Change, Leilei
    Wang, Liuying
    Wang, Wei
    Liu, Gu
    Ling, Xiaodong
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 1, 2016, : 545 - 549
  • [30] MODIFIED AKAIKE INFORMATION CRITERION FOR ESTIMATING THE NUMBER OF COMPONENTS IN A PROBABILITY MIXTURE MODEL
    Elnakib, Ahmed
    Gimel'farb, Georgy
    Inanc, Tamer
    El-Baz, Ayman
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2497 - 2500