Akaike information criterion;
corrected Akaike information criterion;
generalized Akaike information criteria;
Kullback-Leibler information;
robust model selection;
D O I:
10.1111/1467-9868.00139
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
To measure the distance between a robust function evaluated under the true regression model and under a fitted model, we propose generalized Kullback-Leibler information. Using this generalization we have developed three robust model selection criteria, AICR*, AICCR* and AICCR, that allow the selection of candidate models that not only fit the majority of the data but also take into account non-normally distributed errors. The AICR* and AICCR criteria can unify most existing Akaike information criteria; three examples of such unification are given. Simulation studies are presented to illustrate the relative performance of each criterion.
机构:
Univ Rennes, Ctr Res Econ & Stat CREST, UMR 9194, CNRS,Ecole Natl Stat & Anal Informat ENSAI, F-35000 Rennes, FranceUniv Rennes, Ctr Res Econ & Stat CREST, UMR 9194, CNRS,Ecole Natl Stat & Anal Informat ENSAI, F-35000 Rennes, France
Saumard, Adrien
Navarro, Fabien
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 1 Pantheon Sorbonne, SAMM Lab, F-75231 Paris, FranceUniv Rennes, Ctr Res Econ & Stat CREST, UMR 9194, CNRS,Ecole Natl Stat & Anal Informat ENSAI, F-35000 Rennes, France
机构:
Univ Illinois, Dept Phys, Urbana, IL 61801 USAUniv Illinois, Dept Phys, Urbana, IL 61801 USA
Tan, M. Y. J.
Biswas, Rahul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Phys, Urbana, IL 61801 USA
Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USAUniv Illinois, Dept Phys, Urbana, IL 61801 USA