Akaike information criterion;
corrected Akaike information criterion;
generalized Akaike information criteria;
Kullback-Leibler information;
robust model selection;
D O I:
10.1111/1467-9868.00139
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
To measure the distance between a robust function evaluated under the true regression model and under a fitted model, we propose generalized Kullback-Leibler information. Using this generalization we have developed three robust model selection criteria, AICR*, AICCR* and AICCR, that allow the selection of candidate models that not only fit the majority of the data but also take into account non-normally distributed errors. The AICR* and AICCR criteria can unify most existing Akaike information criteria; three examples of such unification are given. Simulation studies are presented to illustrate the relative performance of each criterion.
机构:
Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
RIKEN Ctr Brain Sci, Stat Math Unit, 2-1 Hirosawa, Wako, Saitama 3510198, JapanUniv Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan