Integration of single ion implantation method in focused ion beam system for nanofabrication

被引:0
作者
Yang, Changyi [1 ]
Jamieson, David N. [1 ]
Hearne, Sean [2 ]
Hopf, Toby [1 ]
Pakes, Chris [1 ]
Prawer, Steven [1 ]
Andresen, Soren E. [2 ]
Dzurak, Andrew [2 ]
Gauja, Eric [2 ]
Hudson, Fay E. [2 ]
Clark, Robert G. [2 ]
机构
[1] Univ Melbourne, Sch Phys, Ctr Comp Quantum Technol, Melbourne, Vic 3010, Australia
[2] Univ New South Wales, Sch Elect Engn & Phys, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
来源
2006 INTERNATIONAL CONFERENCE ON NANOSCIENCE AND NANOTECHNOLOGY, VOLS 1 AND 2 | 2006年
基金
澳大利亚研究理事会;
关键词
single ion implantation; Focused Ion Beam (FIB); nanofabrication; phosphorus array; qubits;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A method of single ion implantation based on the online detection of individual ion impacts on a pure silicon substrate has been implemented in a Focused Ion Beam (FIB) System. The optimized silicon detector integrated with a state-of-art low noise electronic system and operated at a low temperature makes it possible to achieve single ion detection with a minimum energy detection limit about 1 to 3.5 keV in a FIB chamber. The method of single ion implantation is compatible with a nanofabrication process. The lateral positioning of the implantation sites are controlled to nanometer accuracy (-5 nm) using nanofabricated PMMA masks. The implantation depth is controlled by tuning the single ion energy to a certain energy level (5-30 keV). The system has been successfully tested in the detection of 30 keV Si+ single ions. The counting of single ion implantation in each site is achieved by the detection of e-h pairs (an outcome of ionization energy) produced by the ion-solid interaction; each 30 keV Si+ ion implanting through a 5 nm SiO2 surface layer and stopping at a pure silicon substrate produces an average ionization energy about 7.0 keV. A further development for improving a detection limit down to less than 1 keV in FIB for low energy phosphorus implantation and detection is outlined. Fabrication of nanometer-scaled phosphorus arrays for the application of qubits construction is discussed.
引用
收藏
页码:612 / +
页数:2
相关论文
共 7 条
[1]   Progress in silicon-based quantum computing [J].
Clark, RG ;
Brenner, R ;
Buehler, TM ;
Chan, V ;
Curson, NJ ;
Dzurak, AS ;
Gauja, E ;
Goan, HS ;
Greentree, AD ;
Hallam, T ;
Hamilton, AR ;
Hollenberg, LCL ;
Jamieson, DN ;
McCallum, JC ;
Milburn, GJ ;
O'Brien, JL ;
Oberbeck, L ;
Pakes, CI ;
Prawer, SD ;
Reilly, DJ ;
Ruess, FJ ;
Schofield, SR ;
Simmons, MY ;
Stanley, FE ;
Starrett, RP ;
Wellard, C ;
Yang, C .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1808) :1451-1471
[2]   Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions [J].
Jamieson, DN ;
Yang, C ;
Hopf, T ;
Hearne, SM ;
Pakes, CI ;
Prawer, S ;
Mitic, M ;
Gauja, E ;
Andresen, SE ;
Hudson, FE ;
Dzurak, AS ;
Clark, RG .
APPLIED PHYSICS LETTERS, 2005, 86 (20) :1-3
[3]   A silicon-based nuclear spin quantum computer [J].
Kane, BE .
NATURE, 1998, 393 (6681) :133-137
[4]   Integration of scanning probes and ion beams [J].
Persaud, A ;
Park, SJ ;
Liddle, JA ;
Schenkel, T ;
Bokor, J ;
Rangelow, IW .
NANO LETTERS, 2005, 5 (06) :1087-1091
[5]   Enhancing semiconductor device performance using ordered dopant arrays [J].
Shinada, T ;
Okamoto, S ;
Kobayashi, T ;
Ohdomari, I .
NATURE, 2005, 437 (7062) :1128-1131
[6]   Single phosphorus ion implantation into prefabricated nanometre cells of silicon devices for quantum bit fabrication [J].
Yang, CY ;
Jamieson, DN ;
Pakes, C ;
Prawer, S ;
Dzurak, A ;
Stanley, F ;
Spizziri, P ;
Macks, L ;
Gauja, E ;
Clark, RG .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2003, 42 (6B) :4124-4128
[7]  
YANG CY, 2005, P SPIE, V5648