Two-way and three-way negativities of three-qubit entangled states

被引:19
作者
Sharma, S. Shelly [1 ]
Sharma, N. K.
机构
[1] Univ Estadual Londrina, Dept Fis, BR-86051990 Londrina, Parana, Brazil
[2] Univ Estadual Londrina, Dept Matemat, BR-86051990 Londrina, Parana, Brazil
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 01期
关键词
Quantum theory;
D O I
10.1103/PhysRevA.76.012326
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose to quantify three-qubit entanglement using global negativity along with K-way negativities, where K=2 and 3. The principle underlying the definition of K-way negativity for pure and mixed states of N subsystems is a positive partial transpose sufficient condition. However, K-way partial transpose with respect to a subsystem is defined so as to shift the focus to K-way coherences instead of K subsystems of the composite system. A quantum state of a three-qubit system is characterized by the coherences measured by global, two-way, and three-way negativities. For a canonical state of three-qubit system, entanglement measures for genuine tripartite entanglement, W-like entanglement, and bipartite entanglement can be related to two-way and three-way negativities.
引用
收藏
页数:5
相关论文
共 21 条
[1]   Generalized Schmidt decomposition and classification of three-quantum-bit states [J].
Acín, A ;
Andrianov, A ;
Costa, L ;
Jané, E ;
Latorre, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1560-1563
[2]   Three-qubit pure-state canonical forms [J].
Acín, A ;
Andrianov, A ;
Jané, E ;
Tarrach, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6725-6739
[3]  
[Anonymous], 2001, QUANTUM INFORM INTRO
[4]   Unextendible product bases and bound entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5385-5388
[5]   Multiparticle entanglement [J].
Carteret, HA ;
Linden, N ;
Popescu, S ;
Sudbery, A .
FOUNDATIONS OF PHYSICS, 1999, 29 (04) :527-552
[6]   Multipartite generalization of the Schmidt decomposition [J].
Carteret, HA ;
Higuchi, A ;
Sudbery, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (12) :7932-7939
[7]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[8]  
EISERT J, 2001, THESIS U POTSDAM
[9]   Separability of mixed states: Necessary and sufficient conditions [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICS LETTERS A, 1996, 223 (1-2) :1-8
[10]   Inseparable two spin-1/2 density matrices can be distilled to a singlet form [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW LETTERS, 1997, 78 (04) :574-577