Cooling effect of nanoscale Bi2Te3/Sb2Te3 multilayered thermoelectric thin films

被引:13
作者
Hines, Mardecial [2 ]
Lenhardt, Joshua [2 ]
Lu, Ming [3 ]
Jiang, Li [4 ]
Xiao, Zhigang [1 ]
机构
[1] Alabama A&M Univ, Dept Elect Engn, Normal, AL 35762 USA
[2] Alabama A&M Univ, Dept Elect Engn, Normal, AL 35762 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[4] Tuskegee Univ, Dept Elect Engn, Tuskegee, AL 36088 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2012年 / 30卷 / 04期
基金
美国国家科学基金会;
关键词
QUANTUM-WELL STRUCTURES; HEAT-TRANSFER; MERIT; POWER; FIGURE; COOLER; NANOSTRUCTURES; SUPERLATTICES; PERFORMANCE; TRANSPORT;
D O I
10.1116/1.4725483
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Managing high heat flux is one of the greatest technical challenges the integrated circuit (IC) industry is facing because the rising temperature limits device minimization and decreases its lifetime. In this paper, we report the characterization of the cooling effect of nanoscale Bi2Te3/Sb2Te3 multilayered thin films. The multilayer thin film was prepared with e-beam evaporation, and had 21 layers (5-nm-thick each layer and 105-nm-thick total). A thermoelectric device of the multilayer film, which is sandwiched between a diode temperature sensor and a platinum temperature sensor, was fabricated to measure the cooling effect. A maximum cooling temperature difference of about 3K was obtained from the film at an applied dc electrical current of 5 mA. The nanoscale multilayer film could be integrated in the IC devices for the application of high-efficiency thermoelectric solid-state cooling. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4725483]
引用
收藏
页数:4
相关论文
共 26 条
  • [1] Nanoscale thermal transport
    Cahill, DG
    Ford, WK
    Goodson, KE
    Mahan, GD
    Majumdar, A
    Maris, HJ
    Merlin, R
    Phillpot, SR
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) : 793 - 818
  • [2] Heat transfer in nanostructures for solid-state energy conversion
    Chen, G
    Shakouri, A
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (02): : 242 - 252
  • [3] Thermal conductivity and heat transfer in superlattices
    Chen, G
    Neagu, M
    [J]. APPLIED PHYSICS LETTERS, 1997, 71 (19) : 2761 - 2763
  • [4] CsBi4Te6:: A high-performance thermoelectric material for low-temperature applications
    Chung, DY
    Hogan, T
    Brazis, P
    Rocci-Lane, M
    Kannewurf, C
    Bastea, M
    Uher, C
    Kanatzidis, MG
    [J]. SCIENCE, 2000, 287 (5455) : 1024 - 1027
  • [5] Fabrication and measured performance of a first-generation microthermoelectric cooler
    da Silva, LW
    Kaviany, M
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2005, 14 (05) : 1110 - 1117
  • [6] Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport
    da Silva, LW
    Kaviany, M
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (10-11) : 2417 - 2435
  • [7] Thermoelectric cooling and power generation
    DiSalvo, FJ
    [J]. SCIENCE, 1999, 285 (5428) : 703 - 706
  • [8] Dresselhaus M. S., 2001, MRS FALL M UNPUB
  • [9] Goldsmid H.J., 1986, Electronic Refrigeration
  • [10] Thermoelectric quantum-dot superlattices with high ZT
    Harman, TC
    Taylor, PJ
    Spears, DL
    Walsh, MP
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2000, 29 (01) : L1 - L4