A study on the fourth q-Painleve equation

被引:50
作者
Kajiwara, K [1 ]
Noumi, M
Yamada, Y
机构
[1] Doshisha Univ, Dept Elect Engn, Kyoto 6100321, Japan
[2] Kobe Univ, Dept Math, Kobe, Hyogo 6578501, Japan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 41期
关键词
D O I
10.1088/0305-4470/34/41/312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A q-difference analogue of the fourth Painleve equation is proposed. Its symmetry structure and some particular solutions are investigated.
引用
收藏
页码:8563 / 8581
页数:19
相关论文
共 19 条
[1]   NONLINEAR CHAINS AND PAINLEVE EQUATIONS [J].
ADLER, VE .
PHYSICA D, 1994, 73 (04) :335-351
[2]  
[Anonymous], CRM SERIES MATH PHYS
[3]  
GASPER G, 1990, ENCY MATH ITS APPL, V35
[4]   DO INTEGRABLE MAPPINGS HAVE THE PAINLEVE PROPERTY [J].
GRAMMATICOS, B ;
RAMANI, A ;
PAPAGEORGIOU, V .
PHYSICAL REVIEW LETTERS, 1991, 67 (14) :1825-1828
[5]   MONODROMY PRESERVING DEFORMATION OF LINEAR ORDINARY DIFFERENTIAL-EQUATIONS WITH RATIONAL COEFFICIENTS .1. GENERAL-THEORY AND TAU-FUNCTION [J].
JIMBO, M ;
MIWA, T ;
UENO, K .
PHYSICA D, 1981, 2 (02) :306-352
[6]   MONODROMY PERSERVING DEFORMATION OF LINEAR ORDINARY DIFFERENTIAL-EQUATIONS WITH RATIONAL COEFFICIENTS .2. [J].
JIMBO, M ;
MIWA, T .
PHYSICA D, 1981, 2 (03) :407-448
[7]  
Jimbo M, 1981, PHYSICA D, V2, P26
[8]   Determinant structure of the rational solutions for the Painleve IV equation [J].
Kajiwara, K ;
Ohta, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (10) :2431-2446
[9]  
KAJIWARA K, 2001, UNPUB
[10]  
Koekoek R., 1998, Tech. Rep. 98-17