Oscillatory numerical experiments in finely layered anisotropic viscoelastic media

被引:10
作者
Picotti, Stefano [1 ]
Carcione, Jose M. [1 ]
Santos, Juan E. [2 ,3 ,4 ]
机构
[1] Ist Nazl Oceanog & Geofis Sperimentale OGS, I-34010 Trieste, Italy
[2] Univ Buenos Aires, CONICET, Inst Gas & Petroleo, Fac Ingn, Buenos Aires, DF, Argentina
[3] Univ Nacl La Plata, La Plata, Buenos Aires, Argentina
[4] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Backus averaging; Viscoelasticity; Anisotropy; FE method; DEEP-SEA SEDIMENTS; VELOCITY DISPERSION; ELASTIC-ANISOTROPY; WAVE-PROPAGATION; ATTENUATION; ROCKS; FLOW;
D O I
10.1016/j.cageo.2012.02.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A finely layered medium behaves as a homogeneous anisotropic medium at long wavelengths. When each layer is a transversely isotropic viscoelastic (TIV) medium, attenuation anisotropy can be described by a generalization of Backus averaging to the lossy case. We introduce a method to compute the complex and frequency-dependent stiffnesses of the equivalent viscoelastic, homogeneous, transversely isotropic medium from numerical simulations of oscillatory (harmonic) tests based on a space-frequency domain finite-element (FE) method. We apply the methodology to a periodic sequence of shale and limestone thin layers and determine the energy velocities and quality factors of the qP-, qSV- and SH-wave modes as a function of frequency and propagation direction. The agreement between theory and numerical experiments is very good when the long-wavelength condition is satisfied. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 30 条
  • [1] Stress-wave energy management through material anisotropy
    Amirkhizi, Alireza V.
    Tehranian, Aref
    Nemat-Nasser, Sia
    [J]. WAVE MOTION, 2010, 47 (08) : 519 - 536
  • [2] [Anonymous], 1981, Seismic Waves and Sources
  • [3] Auld B.A., 1990, ACOUSTIC FIELDS WAVE, V1
  • [4] LONG-WAVE ELASTIC ANISOTROPY PRODUCED BY HORIZONTAL LAYERING
    BACKUS, GE
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1962, 67 (11): : 4427 - &
  • [5] Elastic moduli of anisotropic clay
    Bayuk, Irina O.
    Ammerman, Mike
    Chesnokov, Evgeni M.
    [J]. GEOPHYSICS, 2007, 72 (05) : D107 - D117
  • [6] Bruggerman DAG, 1937, ANN PHYS-BERLIN, V29, P160
  • [7] Anisotropic poroelasticity and wave-induced fluid flow: harmonic finite-element simulations
    Carcione, J. M.
    Santos, J. E.
    Picotti, S.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2011, 186 (03) : 1245 - 1254
  • [8] Carcione J.M., 2007, Handbook of Geophysical Exploration: Seismic Exploration, V38
  • [9] ANISOTROPIC-Q AND VELOCITY DISPERSION OF FINELY LAYERED MEDIA
    CARCIONE, JM
    [J]. GEOPHYSICAL PROSPECTING, 1992, 40 (07) : 761 - 783
  • [10] Carcione JM, 1998, ACUSTICA, V84, P495