Distance-regular graphs which support a spin model are thin

被引:0
|
作者
Curtin, B [1 ]
机构
[1] Kyushu Univ, Dept Math, Higashi Ku, Fukuoka 81281, Japan
关键词
spin model; Terwilliger algebra; distance-regular graph; association scheme;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any distance-regular graph whose Bose-Mesner algebra contains a spin model of a certain type is thin in the sense of Terwilliger. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 50 条
  • [31] Nonexistence of a Class of Distance-regular Graphs
    Huang, Yu-pei
    Pan, Yeh-jong
    Weng, Chih-wen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (02)
  • [32] Codes in Shilla Distance-Regular Graphs
    Belousov, I. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 305 (Suppl 1) : S4 - S9
  • [33] On perturbations of almost distance-regular graphs
    Dalfo, C.
    van Dam, E. R.
    Fiol, M. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2626 - 2638
  • [34] Codes in Shilla distance-regular graphs
    Belousov, Ivan NIkolaevich
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (02): : 34 - 39
  • [35] ON ISOMORPHISM BETWEEN DISTANCE-REGULAR GRAPHS
    Goryainov, S. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2014, 11 : 311 - 320
  • [36] Algebraic characterizations of distance-regular graphs
    Fiol, MA
    DISCRETE MATHEMATICS, 2002, 246 (1-3) : 111 - 129
  • [37] Codes in Shilla Distance-Regular Graphs
    I. N. Belousov
    Proceedings of the Steklov Institute of Mathematics, 2019, 305 : S4 - S9
  • [38] A characterization of Q-polynomial distance-regular graphs
    Pascasio, Arlene A.
    DISCRETE MATHEMATICS, 2008, 308 (14) : 3090 - 3096
  • [39] Distance-regular Cayley graphs on dihedral groups
    Miklavic, Stefko
    Potocnik, Primoz
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (01) : 14 - 33
  • [40] Periodicities of Grover Walks on Distance-Regular Graphs
    Yoshie, Yusuke
    GRAPHS AND COMBINATORICS, 2019, 35 (06) : 1305 - 1321