Structural bifurcation of 2-D incompressible flows

被引:28
作者
Ghil, M [1 ]
Ma, T
Wang, SH
机构
[1] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA
[3] Sichuan Univ, Dept Math, Chengdu, Peoples R China
[4] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
D O I
10.1512/iumj.2001.50.2183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study in this article the structural bifurcation of divergence-free vector fields on a two-dimensional (2-D) compact manifold M. We prove that, for a one-parameter family of divergence-free vector fields u ((.), t) structural bifurcation - i.e. change in their topological-equivalence class-occurs at to if u((.), t(0)) has a degenerate singular point x(0) is an element of partial derivativeM such that partial derivativeu(x(0), t(0))/ partial derivativet not equal 0. Careful analysis of the trajectories allows us to give a complete classification of the orbit structure of u (x, t) near (x(0), t(0)). This article is part of a program to develop a geometric theory for the Lagrangian dynamics of 2-D incompressible fluid flows.
引用
收藏
页码:159 / 180
页数:22
相关论文
共 29 条
[1]  
[Anonymous], 1987, TOPICS GEOPHYS FLUID
[2]  
[Anonymous], CONT MATH
[3]  
Arnold V. I., 1998, TOPOLOGICAL METHODS
[4]  
ARNOLD VI, 1965, DOKL AKAD NAUK SSSR+, V162, P975
[5]  
Batchelor G. K., 1967, INTRO FLUID MECH
[6]  
Brenier Y, 1999, COMMUN PUR APPL MATH, V52, P411, DOI 10.1002/(SICI)1097-0312(199904)52:4<411::AID-CPA1>3.0.CO
[7]  
2-3
[8]  
Brenier Y., 1989, J AM MATH SOC, V2, P225, DOI 10.1090/S0894-0347-1989-0969419-8
[9]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[10]  
Constantin P., 1988, Chicago Lectures in Mathematics, DOI DOI 10.7208/CHICAGO/9780226764320.001.0001