Nonlinear higher order fractional terminal value problems

被引:31
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Shiri, Babak [4 ]
机构
[1] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[2] Inst Space Sci, Magurele, Romania
[3] China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung, Taiwan
[4] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
关键词
terminal value problems; systems of fractional differential equations; existence; regularity; weakly singular Volterra and Fredholm integral equations; piecewise polynomials collocation methods; COLLOCATION METHODS; DIFFERENTIAL-EQUATIONS;
D O I
10.3934/math.2022420
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Terminal value problems for systems of fractional differential equations are studied with an especial focus on higher-order systems. Discretized piecewise polynomial collocation methods are used for approximating the exact solution. This leads to solving a system of nonlinear equations. For solving such a system an iterative method with a required tolerance is introduced and analyzed. The existence of a unique solution is guaranteed with the aid of the fixed point theorem. Order of convergence for the given numerical method is obtained. Numerical experiments are given to support theoretical results.
引用
收藏
页码:7489 / 7506
页数:18
相关论文
共 21 条
[1]   Dynamical analysis of the Irving-Mullineux oscillator equation of fractional order [J].
Abbas, Syed ;
Erturk, Vedat Suat ;
Momani, Shaher .
SIGNAL PROCESSING, 2014, 102 :171-176
[2]   Modeling and analysis of the polluted lakes system with various fractional approaches [J].
Ahmed, M. M. El-Dessoky ;
Khan, Muhammad Altaf .
CHAOS SOLITONS & FRACTALS, 2020, 134
[3]   On the theory of fractional terminal value problem with ψ-Hilfer fractional derivative [J].
Almalahi, Mohammed A. ;
Abdo, Mohammed S. ;
Panchal, Satish K. .
AIMS MATHEMATICS, 2020, 5 (05) :4889-4908
[4]   Collocation methods for fractional differential equations involving non-singular kernel [J].
Baleanu, D. ;
Shiri, B. .
CHAOS SOLITONS & FRACTALS, 2018, 116 :136-145
[5]   Terminal Value Problem for Differential Equations with Hilfer-Katugampola Fractional Derivative [J].
Benchohra, Mouffak ;
Bouriah, Soufyane ;
Nieto, Juan J. .
SYMMETRY-BASEL, 2019, 11 (05)
[6]   GENERATION OF NONLOCAL FRACTIONAL DYNAMICAL SYSTEMS BY FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Cong, N. D. ;
Tuan, H. T. .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2017, 29 (04) :585-608
[7]  
Diethelm K., 2008, Fract Calc Appl Anal, V11, P259
[8]   A NOTE ON THE WELL-POSEDNESS OF TERMINAL VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Diethelm, Kai ;
Ford, Neville J. .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2018, 30 (03) :371-376
[9]   VOLTERRA INTEGRAL EQUATIONS AND FRACTIONAL CALCULUS: DO NEIGHBORING SOLUTIONS INTERSECT? [J].
Diethelm, Kai ;
Ford, Neville J. .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2012, 24 (01) :25-37
[10]   A nonpolynomial collocation method for fractional terminal value problems [J].
Ford, N. J. ;
Morgado, M. L. ;
Rebelo, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 275 :392-402