A nonstationary bilinear time-optimal problem

被引:0
|
作者
Topunov, MV [1 ]
机构
[1] State Pedag Inst, Moscow, Russia
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on the Saburov method of solving bilinear optimal control problems, a method is designed for solving nonstationary bilinear time-optimal problems with fixed left endpoint and equality-type conditions at the right endpoint of the trajectory. By way of example, an optimal problem is solved to demonstrate the effectiveness of the method.
引用
收藏
页码:941 / 949
页数:9
相关论文
共 50 条
  • [21] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (01): : 61 - 70
  • [22] Asymptotics of the Optimal Time in a Time-Optimal Problem with Two Small Parameters
    Danilin, A. R.
    Kovrizhnykh, O. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 288 : S46 - S53
  • [23] Asymptotics of the optimal time in a singular perturbed linear time-optimal problem
    A. R. Danilin
    O. O. Kovrizhnykh
    Proceedings of the Steklov Institute of Mathematics, 2010, 271 : 53 - 65
  • [24] Asymptotics of the optimal time in a time-optimal problem with two small parameters
    A. R. Danilin
    O. O. Kovrizhnykh
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 46 - 53
  • [25] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2015, 21 (01): : 71 - 80
  • [26] Asymptotics of the Optimal Time in a Singular Perturbed Linear Time-Optimal Problem
    Danilin, A. R.
    Kovrizhnykh, O. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 271 : S53 - S65
  • [27] SWITCHING IN TIME-OPTIMAL PROBLEM WITH CONTROL IN A BALL
    Agrachev, Andrei A.
    Biolo, Carolina
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (01) : 183 - 200
  • [28] BELLMAN FUNCTION FOR TIME-OPTIMAL PROCESS PROBLEM
    PETROV, NN
    JOURNAL OF APPLIED MATHEMATICS AND MECHANICS-USSR, 1970, 34 (05): : 785 - &
  • [29] On the time-optimal control problem for a heat equation
    Dekhkonov, F. N.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2023, 111 (03): : 28 - 38
  • [30] Numerical investigation of a nonlinear time-optimal problem
    Kandoba, I. N.
    Koz'min, I., V
    Novikov, D. A.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2018, 28 (04): : 429 - 444