Biharmonic submanifolds with parallel mean curvature vector field in spheres

被引:23
作者
Balmus, A. [1 ]
Oniciuc, C. [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
关键词
Biharmonic maps; Biharmonic submanifolds; Minimal submanifolds; Mean curvature; HYPERSURFACES;
D O I
10.1016/j.jmaa.2011.08.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some results on the boundedness of the mean curvature of proper biharmonic submanifolds in spheres. A partial classification result for proper biharmonic submanifolds with parallel mean curvature vector field in spheres is obtained. Then, we completely classify the proper biharmonic submanifolds in spheres with parallel mean curvature vector field and parallel Weingarten operator associated to the mean curvature vector field. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:619 / 630
页数:12
相关论文
共 24 条
[1]   HYPERSURFACES WITH CONSTANT MEAN-CURVATURE IN SPHERES [J].
ALENCAR, H ;
DOCARMO, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (04) :1223-1229
[2]   On the scalar curvature of constant mean curvature hypersurfaces in space forms [J].
Alias, Luis J. ;
Carolina Garcia-Martinez, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (02) :579-587
[3]  
ALMANSI E, 1898, ANN MAT NOV
[4]  
[Anonymous], 1998, Kyushu J. Math., DOI DOI 10.2206/KYUSHUJM.52.167
[5]  
[Anonymous], 2003, THESIS
[6]  
[Anonymous], CBMS REG C SER MATH
[7]  
[Anonymous], 1973, PURE APPL MATH
[8]   Classification results for biharmonic submanifolds in spheres [J].
Balmus, A. ;
Montaldo, S. ;
Oniciuc, C. .
ISRAEL JOURNAL OF MATHEMATICS, 2008, 168 (01) :201-220
[9]   Biharmonic hypersurfaces in 4-dimensional space forms [J].
Balmus, Adina ;
Montaldo, Stefano ;
Oniciuc, Cezar .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (12) :1696-1705
[10]   Biharmonic submanifolds of S3 [J].
Caddeo, R ;
Montaldo, S ;
Oniciuc, C .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (08) :867-876