On Mathematical Aspects of Evolution of Dislocation Density in Metallic Materials

被引:1
作者
Czyzewska, Natalia [1 ]
Kusiak, Jan [2 ]
Morkisz, Pawel [1 ]
Oprocha, Piotr [1 ]
Pietrzyk, Maciej [2 ]
Przybylowicz, Pawel [1 ]
Rauch, Lukasz [2 ]
Szeliga, Danuta [2 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, Krakow, Poland
[2] AGH Univ Sci & Technol, Fac Met Engn & Ind Comp Sci, Krakow, Poland
关键词
Mathematical models; Strain; Delays; Metallic materials; Numerical models; Differential equations; Error analysis; Delay differential equation; Euler method; metallic materials; Runge-Kutta method; strict error analysis; HOT DEFORMATION; RECRYSTALLIZATION; MICROSTRUCTURE; BEHAVIORS; MODELS;
D O I
10.1109/ACCESS.2022.3199006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the solution of delay differential equations describing evolution of dislocation density in metallic materials. Hardening, restoration, and recrystallization characterizing the evolution of dislocation populations provide the essential equation of the model. The last term transforms ordinary differential equation (ODE) into delay differential equation (DDE) with strong (in general, Holder) nonlinearity. We prove upper error bounds for the explicit Euler method, under the assumption that the right-hand side function is Holder continuous and monotone which allows us to compare accuracy of other numerical methods in our model (e.g. Runge-Kutta), in particular when explicit formulas for solutions are not known. Finally, we test the above results in simulations of real industrial process.
引用
收藏
页码:86793 / 86812
页数:20
相关论文
共 37 条
[1]  
Bellen A., 2003, Numerical Methods for Delay Differential Equations
[2]  
Butcher J., 2008, NUMERICAL METHODS OR, DOI [DOI 10.1002/9781119121534.CH4, 10.1002/9781119121534, DOI 10.1002/9781119121534]
[3]   Hot deformation and dynamic α-globularization of a Ti-17 alloy: Consistent physical model [J].
Buzolin, Ricardo Henrique ;
Lasnik, Michael ;
Krumphals, Alfred ;
Poletti, Maria Cecilia .
MATERIALS & DESIGN, 2021, 197
[4]   A dislocation-based model for the microstructure evolution and the flow stress of a Ti5553 alloy [J].
Buzolin, Ricardo Henrique ;
Lasnik, Michael ;
Krumphals, Alfred ;
Poletti, Maria Cecilia .
INTERNATIONAL JOURNAL OF PLASTICITY, 2021, 136
[5]   On strong convergence of explicit numerical methods for stochastic delay differential equations under non-global Lipschitz conditions [J].
Cao, Wanrong ;
Liang, Jia ;
Liu, Yufen .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 382
[6]  
Davies C.H.J, 1994, PRIVATE COMMUNICATIO
[7]   DYNAMICS OF THE EVOLUTION OF DISLOCATION POPULATIONS [J].
DAVIES, CHJ .
SCRIPTA METALLURGICA ET MATERIALIA, 1994, 30 (03) :349-353
[8]   Deformation Mechanisms in the Near-β Titanium Alloy Ti-55531 [J].
Dikovits, Martina ;
Poletti, Cecilia ;
Warchomicka, Fernando .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2014, 45A (03) :1586-1596
[9]   Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities [J].
Du, Feifei ;
Lu, Jun-Guo .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 375
[10]   A UNIFIED PHENOMENOLOGICAL DESCRIPTION OF WORK-HARDENING AND CREEP BASED ON ONE-PARAMETER MODELS [J].
ESTRIN, Y ;
MECKING, H .
ACTA METALLURGICA, 1984, 32 (01) :57-70