GENERALIZED SYNCHRONIZATION OF FRACTIONAL ORDER CHAOTIC SYSTEMS

被引:8
|
作者
Wang Ming-Jun [1 ]
Wang Xing-Yuan [2 ]
机构
[1] Dalian Univ, Sch Informat Engn, Dalian 116622, Peoples R China
[2] Dalian Univ Technol, Sch Elect & Informat Engn, Dalian 116024, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Fractional order; chaotic system; generalized synchronization; LAG SYNCHRONIZATION; CHEN SYSTEM; HYPERCHAOS; STATE; PHASE;
D O I
10.1142/S0217979211058638
中图分类号
O59 [应用物理学];
学科分类号
摘要
In the paper, generalized chaotic synchronization of a class of fractional order systems is studied. Based on the stability theory of linear fractional order systems, a generalized synchronization scheme is presented, and theoretical analysis is provided to verify its feasibility. The proposed method can realize generalized synchronization not only of fractional order systems with same dimension, but also of systems with different dimensions. Besides, the function relation of generalized synchronization can be linear or nonlinear, Numerical simulations show the effectiveness of the scheme.
引用
收藏
页码:1283 / 1292
页数:10
相关论文
共 50 条
  • [41] Chaotic synchronization between different fractional-order chaotic systems
    Zhou, Ping
    Ding, Rui
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (10): : 2839 - 2848
  • [42] Fractional generalized synchronization in a class of nonlinear fractional order systems
    Rafael Martínez-Guerra
    Juan L. Mata-Machuca
    Nonlinear Dynamics, 2014, 77 : 1237 - 1244
  • [43] Fractional generalized synchronization in a class of nonlinear fractional order systems
    Martinez-Guerra, Rafael
    Mata-Machuca, Juan L.
    NONLINEAR DYNAMICS, 2014, 77 (04) : 1237 - 1244
  • [44] Generalized Function Projective Synchronization of Incommensurate Fractional-Order Chaotic Systems with Inputs Saturation
    Yan Zhou
    Hongxing Wang
    Heng Liu
    International Journal of Fuzzy Systems, 2019, 21 : 823 - 836
  • [45] Generalized Function Projective Synchronization of Incommensurate Fractional-Order Chaotic Systems with Inputs Saturation
    Zhou, Yan
    Wang, Hongxing
    Liu, Heng
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (03) : 823 - 836
  • [46] Mittag-Leffler stability, control, and synchronization for chaotic generalized fractional-order systems
    Abed-Elhameed, Tarek M.
    Aboelenen, Tarek
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [47] Generalized synchronization of commensurate fractional-order chaotic systems: Applications in secure information transmission
    Martinez-Fuentes, Oscar
    Javier Montesinos-Garcia, Juan
    Francisco Gomez-Aguilar, Jose
    DIGITAL SIGNAL PROCESSING, 2022, 126
  • [48] Anticipating Synchronization of Integer Order and Fractional Order Chaotic Liu Systems
    Dong Pengzhen
    Liu Jie
    Li Xinjie
    Xing Lifen
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 401 - 405
  • [49] Compound synchronization for four chaotic systems of integer order and fractional order
    Sun, Junwei
    Yin, Quan
    Shen, Yi
    EPL, 2014, 106 (04)
  • [50] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018