GENERALIZED SYNCHRONIZATION OF FRACTIONAL ORDER CHAOTIC SYSTEMS

被引:8
|
作者
Wang Ming-Jun [1 ]
Wang Xing-Yuan [2 ]
机构
[1] Dalian Univ, Sch Informat Engn, Dalian 116622, Peoples R China
[2] Dalian Univ Technol, Sch Elect & Informat Engn, Dalian 116024, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2011年 / 25卷 / 09期
基金
中国国家自然科学基金;
关键词
Fractional order; chaotic system; generalized synchronization; LAG SYNCHRONIZATION; CHEN SYSTEM; HYPERCHAOS; STATE; PHASE;
D O I
10.1142/S0217979211058638
中图分类号
O59 [应用物理学];
学科分类号
摘要
In the paper, generalized chaotic synchronization of a class of fractional order systems is studied. Based on the stability theory of linear fractional order systems, a generalized synchronization scheme is presented, and theoretical analysis is provided to verify its feasibility. The proposed method can realize generalized synchronization not only of fractional order systems with same dimension, but also of systems with different dimensions. Besides, the function relation of generalized synchronization can be linear or nonlinear, Numerical simulations show the effectiveness of the scheme.
引用
收藏
页码:1283 / 1292
页数:10
相关论文
共 50 条
  • [21] Adaptive impulsive synchronization for a class of fractional order complex chaotic systems
    Zhang, Xingpeng
    Li, Dong
    Zhang, Xiaohong
    JOURNAL OF VIBRATION AND CONTROL, 2019, 25 (10) : 1614 - 1628
  • [22] Backstepping based stabilization and synchronization of a class of fractional order chaotic systems
    Shukla, Manoj Kumar
    Sharma, B. B.
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 274 - 284
  • [23] Chaotic Synchronization and Parameter Identification of Fractional-order Unified Systems
    Wang Shaoying
    Li Qiongyao
    Dong Jun
    Wu Aiguo
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 2454 - 2459
  • [24] Synchronization of fractional-order chaotic systems based on the fractional-order sliding mode controller
    Yan Xiaomei
    Shang Ting
    Zhao Xiaoguo
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 429 - 434
  • [25] Generalized and inverse generalized synchronization of fractional-order discrete-time chaotic systems with non-identical dimensions
    Khennaoui, Amina-Aicha
    Ouannas, Adel
    Bendoukha, Samir
    Grassi, Giuseppe
    Wang, Xiong
    Viet-Thanh Pham
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [26] Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems
    Bouzeriba, A.
    Boulkroune, A.
    Bouden, T.
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2016, 7 (05) : 893 - 908
  • [27] Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    PHYSICS LETTERS A, 2011, 375 (21) : 2099 - 2110
  • [28] Anticipating Synchronization of Integer Order and Fractional Order Chaotic Liu Systems
    Dong Pengzhen
    Liu Jie
    Li Xinjie
    Xing Lifen
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 401 - 405
  • [29] Observer Designing for Generalized Synchronization of Fractional Order Hyper-chaotic Lu System
    Li Xinjie
    Liu Jie
    Dong Pengzhen
    Xing Lifen
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 426 - 431
  • [30] Synchronization of a new fractional order chaotic system
    Khan A.
    Khattar D.
    Agrawal N.
    Agrawal, Neha (neha.maths10@gmail.com), 2018, Springer Science and Business Media Deutschland GmbH (06) : 1585 - 1591