On the uniform estimate in the Calabi-Yau theorem, II

被引:26
作者
Blocki Zbigniew [1 ]
机构
[1] Jagiellonian Univ, Inst Math, PL-30348 Krakow, Poland
关键词
Hermitian manifolds; complex Monge-Ampere operator; MONGE-AMPERE EQUATION; COMPACT HERMITIAN-MANIFOLDS; DIRICHLET PROBLEM;
D O I
10.1007/s11425-011-4197-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a pluripotential proof of the uniform estimate in the Calabi-Yau theorem works also in the Hermitian case.
引用
收藏
页码:1375 / 1377
页数:3
相关论文
共 16 条
[1]  
[Anonymous], **DROPPED REF**
[2]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[3]   On uniform estimate in Calabi-Yau theorem [J].
Blocki, Z .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 :244-247
[4]  
Bocki Z., 1996, Ann. Sc. Norm. Sup. Pisa, V23, P721
[5]  
CEGRELL U, 1992, MICH MATH J, V39, P145
[6]  
CHERRIER P, 1987, B SCI MATH, V111, P343
[7]  
Dinew S., ARXIV09103937
[8]  
Guan B., ARXIV09063548
[9]   Monge-Ampere equations on compact hermitian manifolds [J].
Hanani, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :49-75
[10]   The complex Monge-Ampere equation [J].
Kolodziej, S .
ACTA MATHEMATICA, 1998, 180 (01) :69-117