Thermodynamics and optimal protocols of multidimensional quadratic Brownian systems

被引:18
作者
Abiuso, Paolo [1 ,2 ]
Holubec, Viktor [3 ]
Anders, Janet [4 ,5 ]
Ye, Zhuolin [6 ]
Cerisola, Federico [4 ,7 ]
Perarnau-Llobet, Marti [2 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[2] Univ Geneva, Dept Appl Phys, CH-1211 Geneva, Switzerland
[3] Charles Univ Prague, Fac Math & Phys, Dept Macromol Phys, V Holesovickach 2, CZ-18000 Prague, Czech Republic
[4] Univ Exeter, Dept Phys & Astron, Stocker Rd, Exeter EX4 4QL, Devon, England
[5] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[6] Univ Leipzig, Inst Theoret Phys, Postfach 100 920, D-04009 Leipzig, Germany
[7] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2022年 / 6卷 / 06期
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
stochastic thermodynamics; thermodynamic control; thermodynamic length; overdamped brownian systems; STATISTICAL DISTANCE; GEOMETRY;
D O I
10.1088/2399-6528/ac72f8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We characterize finite-time thermodynamic processes of multidimensional quadratic overdamped systems. Analytic expressions are provided for heat, work, and dissipation for any evolution of the system covariance matrix. The Bures-Wasserstein metric between covariance matrices naturally emerges as the local quantifier of dissipation. General principles of how to apply these geometric tools to identify optimal protocols are discussed. Focusing on the relevant slow-driving limit, we show how these results can be used to analyze cases in which the experimental control over the system is partial.
引用
收藏
页数:15
相关论文
共 82 条
[1]   Geometric Optimisation of Quantum Thermodynamic Processes [J].
Abiuso, Paolo ;
Miller, Harry J. D. ;
Perarnau-Llobet, Marti ;
Scandi, Matteo .
ENTROPY, 2020, 22 (10) :1-21
[2]   Optimal Cycles for Low-Dissipation Heat Engines [J].
Abiuso, Paolo ;
Perarnau-Llobet, Marti .
PHYSICAL REVIEW LETTERS, 2020, 124 (11)
[3]   THERMODYNAMICS IN FINITE-TIME [J].
ANDRESEN, B ;
SALAMON, P ;
BERRY, RS .
PHYSICS TODAY, 1984, 37 (09) :62-70
[4]   THERMODYNAMICS FOR PROCESSES IN FINITE-TIME [J].
ANDRESEN, B ;
BERRY, RS ;
ONDRECHEN, MJ ;
SALAMON, P .
ACCOUNTS OF CHEMICAL RESEARCH, 1984, 17 (08) :266-271
[5]   Refined Second Law of Thermodynamics for Fast Random Processes [J].
Aurell, Erik ;
Gawedzki, Krzysztof ;
Mejia-Monasterio, Carlos ;
Mohayaee, Roya ;
Muratore-Ginanneschi, Paolo .
JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (03) :487-505
[6]   Optimal Protocols and Optimal Transport in Stochastic Thermodynamics [J].
Aurell, Erik ;
Mejia-Monasterio, Carlos ;
Muratore-Ginanneschi, Paolo .
PHYSICAL REVIEW LETTERS, 2011, 106 (25)
[7]   Optimal performance of periodically driven, stochastic heat engines under limited control [J].
Bauer, Michael ;
Brandner, Kay ;
Seifert, Udo .
PHYSICAL REVIEW E, 2016, 93 (04)
[8]  
Bengtsson I., 2017, GEOMETRY QUANTUM STA
[9]   Geometric properties of adiabatic quantum thermal machines [J].
Bhandari, Bibek ;
Terren Alonso, Pablo ;
Taddei, Fabio ;
von Oppen, Felix ;
Fazio, Rosario ;
Arrachea, Liliana .
PHYSICAL REVIEW B, 2020, 102 (15)
[10]   On the Bures-Wasserstein distance between positive definite matrices [J].
Bhatia, Rajendra ;
Jain, Tanvi ;
Lim, Yongdo .
EXPOSITIONES MATHEMATICAE, 2019, 37 (02) :165-191