Pion distribution amplitude from Euclidean correlation functions: Exploring universality and higher-twist effects

被引:90
作者
Bali, Gunnar S. [1 ,2 ]
Braun, Vladimir M. [1 ]
Glaessle, Benjamin [1 ,3 ]
Goeckeler, Meinulf [1 ]
Gruber, Michael [1 ]
Hutzler, Fabian [1 ]
Korcyl, Piotr [1 ,4 ]
Schaefer, Andreas [1 ]
Wein, Philipp [1 ]
Zhang, Jian-Hui [1 ]
机构
[1] Univ Regensburg, Inst Theoret Phys, Univ Str 31, D-93053 Regensburg, Germany
[2] Tata Inst Fundamental Res, Dept Theoret Phys, Homi Bhabha Rd, Bombay 400005, Maharashtra, India
[3] Univ Tubingen, Zentrum Datenverarbeitung, Wachterstr 76, D-72074 Tubingen, Germany
[4] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Ul Lojasiewicza 11, PL-30348 Krakow, Poland
关键词
LIGHT-CONE OPERATORS; NONPERTURBATIVE RENORMALIZATION; WAVE-FUNCTIONS; CONFORMAL-INVARIANCE; PARTON DISTRIBUTIONS; EVOLUTION-EQUATIONS; EXCLUSIVE PROCESSES; SHORT-DISTANCE; QUARK MASS; LATTICE;
D O I
10.1103/PhysRevD.98.094507
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Building upon our recent study [G. S. Bali et al., Eur. Phys. J. C 78, 217 (2018)], we investigate the feasibility of calculating the pion distribution amplitude from suitably chosen Euclidean correlation functions at large momentum. We demonstrate in this work the advantage of analyzing several correlation functions simultaneously and extracting the pion distribution amplitude from a global fit. This approach also allows us to study higher-twist corrections, which are a major source of systematic error. Our result for the higher-twist parameter delta(pi)(2) is in good agreement with estimates from QCD sum rules. Another novel element is the use of all-to-all propagators, calculated using stochastic estimators, which enables an additional volume average of the correlation functions, thereby reducing statistical errors.
引用
收藏
页数:22
相关论文
共 90 条
[1]  
ABADA A, 2001, PHYS REV D, V64
[2]   Transition form factors γ*γ → η and γ*γ → η′ in QCD [J].
Agaev, S. S. ;
Braun, V. M. ;
Offen, N. ;
Porkert, F. A. ;
Schaefer, A. .
PHYSICAL REVIEW D, 2014, 90 (07)
[3]   Model independent determination of the light-cone wave functions for exclusive processes [J].
Aglietti, U ;
Ciuchini, M ;
Corbò, G ;
Franco, E ;
Martinelli, G ;
Silvestrini, L .
PHYSICS LETTERS B, 1998, 441 (1-4) :371-375
[4]   Light-Cone Parton Distribution Functions from Lattice QCD [J].
Alexandrou, Constantia ;
Cichy, Krzysztof ;
Constantinou, Martha ;
Jansen, Karl ;
Scapellato, Aurora ;
Steffens, Fernanda .
PHYSICAL REVIEW LETTERS, 2018, 121 (11)
[5]   A complete non-perturbative renormalization prescription for quasi-PDFs [J].
Alexandrou, Constantia ;
Cichy, Krzysztof ;
Constantinou, Martha ;
Hadjiyiannakou, Kyriakos ;
Jansen, Karl ;
Panagopoulos, Haralambos ;
Steffens, Fernanda .
NUCLEAR PHYSICS B, 2017, 923 :394-415
[6]   Updated lattice results for parton distributions [J].
Alexandrou, Constantia ;
Cichy, Krzysztof ;
Constantinou, Martha ;
Hadjiyiannakou, Kyriakos ;
Jansen, Karl ;
Steffens, Fernanda ;
Wiese, Christian .
PHYSICAL REVIEW D, 2017, 96 (01)
[7]   Lattice calculation of parton distributions [J].
Alexandrou, Constantia ;
Cichy, Krzysztof ;
Drach, Vincent ;
Garcia-Ramos, Elena ;
Hadjiyiannakou, Kyriakos ;
Jansen, Karl ;
Steffens, Fernanda ;
Wiese, Christian .
PHYSICAL REVIEW D, 2015, 92 (01)
[8]   NONLOCAL LIGHT-CONE EXPANSION OF THE PRODUCT OF CURRENTS AND ITS RENORMALIZATION GROUP-ANALYSIS [J].
ANIKIN, SA ;
ZAVYALOV, OI ;
KARCHEV, NE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1979, 38 (03) :193-202
[9]   SHORT-DISTANCE AND LIGHT-CONE EXPANSIONS FOR PRODUCTS OF CURRENTS [J].
ANIKIN, SA ;
ZAVIALOV, OI .
ANNALS OF PHYSICS, 1978, 116 (01) :135-166
[10]   Lattice results for low moments of light meson distribution amplitudes [J].
Arthur, R. ;
Boyle, P. A. ;
Broemmel, D. ;
Donnellan, M. A. ;
Flynn, J. M. ;
Juettner, A. ;
Rae, T. D. ;
Sachrajda, C. T. C. .
PHYSICAL REVIEW D, 2011, 83 (07)