Microstructure and properties of TiB2 particles reinforced Cu-Cr matrix composite

被引:13
|
作者
Zhang, Pengchao [1 ]
Jie, Jinchuan [1 ]
Li, Hang [1 ]
Wang, Tongmin [1 ]
Li, Tingju [2 ]
机构
[1] Dalian Univ Technol, Sch Mat Sci & Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Lab Special Proc Raw Mat, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
ABRASIVE WEAR BEHAVIOR; PRECIPITATION; ALLOY;
D O I
10.1007/s10853-014-8762-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Copper-chromium matrix composites reinforced by TiB2 particles were prepared by in situ reaction between titanium and copper-boron alloy in the melt. The microstructures, mechanical, and electrical properties of the composite were investigated under as-cast and aging conditions. The results indicate that the TiB2 particles are formed by in situ reaction in matrix. The addition of TiB2 in composite reduces the segregation degree of Cr particles in matrix and inhibits the coarsening of Cr particles at high aging temperature. High hardness of Cu-Cr-TiB2 composite is achieved due to the multiple hardening mechanisms, which are in situ TiB2 particles hardening and precipitation hardening from Cr particles. The wear resistance of composite presents a dramatic improvement due to the formation of TiB2 particles, and TiB2 particles have significant effect on wear mechanism of Cu-Cr-TiB2 composite. The conductivity of composite is lower than that of Cu-Cr alloy, which is attributed to higher resistivity of TiB2 particles and the incremental interface scattering caused by TiB2 particles. But the composites with high TiB2 content still have considerable conductivity after aging.
引用
收藏
页码:3320 / 3328
页数:9
相关论文
共 50 条
  • [21] Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles
    Xiao, Peng
    Gao, Yimin
    Yang, Cuicui
    Liu, Zhiwei
    Li, Yefei
    Xu, Feixing
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 710 : 251 - 259
  • [22] Effects of TiB2 Particles on the Microstructure Evolution and Mechanical Properties of B4C/TiB2 Ceramic Composite
    Niu, Haiyan
    Zhu, Yu
    You, Ning
    Wang, Yangwei
    Cheng, Huanwu
    Luo, Dujun
    Tang, Mengying
    Zhang, Jiamin
    MATERIALS, 2021, 14 (18)
  • [23] Investigation on the Microstructure and Electrochemical Corrosion Properties of TiB2 reinforced aluminum matrix composites
    Wu, Qi-di
    Meng, Xian-ming
    Guan, Jian-jun
    Liu, Qing
    Liang, Ping
    Wang, Yinan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (06):
  • [24] Microstructure and properties of in-situ TiB2 particulates reinforced A356 composite
    Zhang, YJ
    Jiang, SL
    Ma, NH
    Li, XF
    Wang, HW
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2005, 15 : 124 - 127
  • [26] EFFECT OF Ni ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TiB2/TiB TITANIUM MATRIX COMPOSITE COATINGS
    Lin Yinghua
    Lei Yongping
    Fu Hanguang
    Lin Jian
    ACTA METALLURGICA SINICA, 2014, 50 (12) : 1520 - 1528
  • [27] Microstructure and Wear Properties of TiB2 Reinforced Fe-Based Composite Coating
    Zhu, Weijin
    Kang, Min
    Ndumia, Joseph Ndiithi
    Lin, Jinran
    Huang, Fang
    Zhang, Yin
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (07) : 5559 - 5570
  • [28] Microstructure and Wear Properties of TiB2 Reinforced Fe-Based Composite Coating
    Weijin Zhu
    Min Kang
    Joseph Ndiithi Ndumia
    Jinran Lin
    Fang Huang
    Yin Zhang
    Journal of Materials Engineering and Performance, 2022, 31 : 5559 - 5570
  • [29] Fabrication of TiB2/TiC Duplex Particles Reinforced Carbon Steel Matrix Surface Composite
    Guo, Chang-Qing
    Hua, Xiao-Yan
    Han, Ji-Wei
    INNOVATIVE MATERIALS: ENGINEERING AND APPLICATIONS, 2014, 1052 : 40 - 44
  • [30] Al-4 wt% Cu composite reinforced with in-situ TiB2 particles
    Lu, L
    Lai, MO
    Chen, FL
    ACTA MATERIALIA, 1997, 45 (10) : 4297 - 4309