Convergence of discount time series dynamic linear models

被引:1
作者
Triantafyllopoulos, K. [1 ]
机构
[1] Univ Sheffield, Dept Probabil & Stat, Sheffield S3 7RH, S Yorkshire, England
关键词
Bayesian forecasting; dynamic models; Jordan canonical form; Kalman filtering; Riccati equation; state space models; time series;
D O I
10.1080/03610920601143535
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article studies the limiting behavior of multiple discount time series dynamic linear models (TSDLMs). It is shown that, under mild conditions, all discount TSDLMs converge to the constant (time-invariant) TSDLM. In particular, the limiting posterior precision matrix of the superposition of multiple discount TSDLMs is explored. For non seasonal models, the elements of the limiting posterior precision of the states are given in a recurrence relationship, while for seasonal models the solution of a linear system provides the elements of the respective limiting precision matrix. The proposed methodology uses canonical Jordan forms and it is illustrated with a detailed example of simulated data featuring both trend and seasonal time series.
引用
收藏
页码:2117 / 2127
页数:11
相关论文
共 27 条
[1]   DISCOUNT WEIGHTED ESTIMATION [J].
AMEEN, JRM ;
HARRISON, PJ .
JOURNAL OF FORECASTING, 1984, 3 (03) :285-296
[2]  
AMEEN JRM, 1985, BAYESIAN STAT, V2
[3]  
Anderson BDO., 2012, OPTIMAL FILTERING
[4]  
Assimakis N. D., 2003, NEURAL PARALLEL SCI, P485
[5]  
Brockwell P., 1991, TIME SERIES THEORY M
[6]  
Caines P. E., 1988, LINEAR STOCHASTIC SY
[7]   DISCRETE TIME MATRIX RICCATI EQUATION OF OPTIMAL CONTROL [J].
CAINES, PE ;
MAYNE, DQ .
INTERNATIONAL JOURNAL OF CONTROL, 1970, 12 (05) :785-&
[8]   A fast and stable method to compute the likelihood of time invariant state-space models [J].
Casals, J ;
Sotoca, S ;
Jerez, M .
ECONOMICS LETTERS, 1999, 65 (03) :329-337
[9]   Exact smoothing for stationary and non-stationary time series [J].
Casals, J ;
Jerez, M ;
Sotoca, S .
INTERNATIONAL JOURNAL OF FORECASTING, 2000, 16 (01) :59-69
[10]  
CHAN SW, 1984, IEEE T AUTOMATIC CON, V29, P10