RATIONAL SOLUTIONS FOR THE TIME-FRACTIONAL DIFFUSION EQUATION

被引:41
作者
Atkinson, Colin [1 ]
Osseiran, Adel [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
关键词
Mittag-Leffler function; global rational approximation; inverse Mittag-Leffler function; spectral decomposition of time-fractional equation; Fourier-Laplace transforms; Mellin transform of time-fractional boundary value problem;
D O I
10.1137/100799307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A uniform rational approximation of the Mittag-Leffler function is derived which serves as a global approximant, accounting for both the Taylor series for small arguments and asymptotic series for large arguments. Using a spectral decomposition of the time-fractional diffusion equation, applying Laplace and Fourier transforms, in conjunction with the rational approximation, yields a simple closed form solution to this equation. Furthermore, the approximation is inverted to yield a global rational approximation of the inverse Mittag-Leffler function. Last, we apply Mellin transforms to solve a time-fractional boundary value problem.
引用
收藏
页码:92 / 106
页数:15
相关论文
共 35 条
[1]  
[Anonymous], RES NOTES MATH
[2]   STRESS SINGULARITIES AND INTERFACES IN LINEAR ELASTIC FRACTURE MECHANICS [J].
ATKINSON, C .
INTERNATIONAL JOURNAL OF FRACTURE, 1977, 13 (06) :807-820
[3]   Properties of the Mittag-Leffler relaxation function [J].
Berberan-Santos, MN .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) :629-635
[4]  
Caputo M., 1971, Rivista del Nuovo Cimento, V1, P161, DOI 10.1007/BF02820620
[5]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[6]  
Erdelyi A., 1953, Higher transcendental functions, V2
[7]   FLUCTUATION THEORY OF RECURRENT EVENTS [J].
FELLER, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 67 (SEP) :98-119
[8]  
FREED A, 2002, NASATM2002211914
[9]   Some recent advances in theory and simulation of fractional diffusion processes [J].
Gorenflo, Rudolf ;
Mainardi, Francesco .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (02) :400-415
[10]  
Goreno R., 2002, Fractional Calculus Appl. Anal, V5, P491