ON MATRIX WREATH PRODUCTS OF ALGEBRAS

被引:5
作者
Alahmadi, Adel [1 ]
Alsulami, Hamed [1 ]
Jain, S. K. [2 ]
Zelmanov, Efim [3 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
[2] Ohio Univ, Dept Math, Athens, OH 45701 USA
[3] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
来源
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES | 2017年 / 24卷
基金
美国国家科学基金会;
关键词
growth function; associative algebra; wreath product; GELFAND-KIRILLOV DIMENSION; POLYNOMIALLY BOUNDED GROWTH; NIL ALGEBRAS; LIE-ALGEBRAS;
D O I
10.3934/era.2017.24.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new construction of matrix wreath products of algebras that is similar to the construction of wreath products of groups introduced by L. Kaloujnine and M. Krasner [17]. We then illustrate its usefulness by proving embedding theorems into finitely generated algebras and constructing nil algebras with prescribed Gelfand-Kirillov dimension.
引用
收藏
页码:78 / 86
页数:9
相关论文
共 30 条
  • [11] GELFAND-KIRILLOV DIMENSION
    BORHO, W
    KRAFT, H
    [J]. MATHEMATISCHE ANNALEN, 1976, 220 (01) : 1 - 24
  • [12] Prime and primitive algebras with prescribed growth types
    Greenfeld, Be'eri
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (01) : 161 - 174
  • [13] Grigorchuk R.I., 1984, IZV AKAD NAUK SSSR, V48, P939
  • [14] Higman B. H., 1949, Jour-nal of the London Mathematical Societys1-24, P247, DOI 10.1112/jlms/s1-24.4.247
  • [15] KALOUJNINE L, 1948, CR HEBD ACAD SCI, V227, P806
  • [16] PROBLEMS IN THEORY OF RINGS REVISITED
    KAPLANSK.I
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (05) : 445 - &
  • [17] An infinite dimensional affine nil algebra with finite Gelfand-Kirillov dimension
    Lenagan, T. H.
    Smoktunowicz, Agata
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (04) : 989 - 1001
  • [18] NIL ALGEBRAS WITH RESTRICTED GROWTH
    Lenagan, T. H.
    Smoktunowicz, Agata
    Young, Alexander A.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2012, 55 : 461 - 475
  • [19] Malcev A, 1952, USPEKHI MAT NAUK, V7, P181
  • [20] A QUASI-ISOMETRIC EMBEDDING THEOREM FOR GROUPS
    Olshanskii, Alexander Yu
    Osin, Denis V.
    [J]. DUKE MATHEMATICAL JOURNAL, 2013, 162 (09) : 1621 - 1648