A generalized Newton iteration for computing the solution of the inverse Henderson problem

被引:8
作者
Delbary, Fabrice [1 ]
Hanke, Martin [1 ]
Ivanizki, Dmitry [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, Germany
关键词
Coarse-graining; radial distribution function; effective potential; Iterative Boltzmann Inversion; Inverse Monte Carlo; POTENTIALS; ALGORITHMS;
D O I
10.1080/17415977.2019.1710504
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a generalized Newton scheme called IHNC (inverse hypernetted-chain iteration) for the construction of effective pair potentials for systems of interacting point-like particles. The construction is realized in such a way that the distribution of the particles matches a given radial distribution function. The IHNC iteration uses the hypernetted-chain integral equation for an approximate evaluation of the inverse of the Jacobian of the forward operator. In contrast to the full Newton method realized in the Inverse Monte Carlo (IMC) scheme, the IHNC algorithm requires only a single molecular dynamics computation of the radial distribution function per iteration step and no further expensive cross-correlations. Numerical experiments are shown to demonstrate that the method is as efficient as the IMC scheme, and that it easily allows to incorporate thermodynamical constraints.
引用
收藏
页码:1166 / 1190
页数:25
相关论文
共 32 条
[1]  
Abraham M., 2014, GROMACS USER MANUAL, V5, P1
[2]  
Ben-Naim A., 2006, Molecular theory of solutions
[3]  
Bjorck A ., 1996, NUMERICAL METHODS LE NUMERICAL METHODS LE, DOI DOI 10.1137/1.9781611971484
[4]   A test of systematic coarse-graining of molecular dynamics simulations: Thermodynamic properties [J].
Fu, Chia-Chun ;
Kulkarni, Pandurang M. ;
Shell, M. Scott ;
Leal, L. Gary .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (16)
[5]   Well-Posedness of the Iterative Boltzmann Inversion [J].
Hanke, Martin .
JOURNAL OF STATISTICAL PHYSICS, 2018, 170 (03) :536-553
[6]  
Hanke M, 2018, LETT MATH PHYS, V108, P285, DOI 10.1007/s11005-017-1009-0
[7]  
Hansen J P., 1986, Theory of Simple Liquids, V2nd edn
[8]   PHASE TRANSITIONS OF LENNARD-JONES SYSTEM [J].
HANSEN, JP ;
VERLET, L .
PHYSICAL REVIEW, 1969, 184 (01) :151-&
[10]   UNIQUENESS THEOREM FOR FLUID PAIR CORRELATION-FUNCTIONS [J].
HENDERSON, RL .
PHYSICS LETTERS A, 1974, A 49 (03) :197-198