Mortality selection in a genetic sample and implications for association studies

被引:67
作者
Domingue, Benjamin W. [1 ]
Belsky, Daniel W. [2 ,3 ]
Harrati, Amal [4 ]
Conley, Dalton [5 ]
Weir, David R. [6 ]
Boardman, Jason D. [7 ]
机构
[1] Stanford Univ, Grad Sch Educ, 520 Galvez Mall, Stanford, CA 94305 USA
[2] Duke Univ, Sch Med, Dept Med, 2020 W Main St, Durham, NC 27705 USA
[3] Duke Univ, Populat Res Inst, 2020 W Main St, Durham, NC 27705 USA
[4] Stanford Univ, Sch Med, 1070 Arastradero Rd Palo Alto, Palo Alto, CA 94304 USA
[5] Princeton Univ, Off Populat Res, Dept Sociol, 153 Wallace Hall Princeton, Princeton, NJ 08544 USA
[6] Univ Michigan, Populat Studies Ctr, Survey Res Ctr, 426 Thompson St, Ann Arbor, MI 48104 USA
[7] Univ Colorado Boulder, Inst Behav Sci, Dept Sociol, 483 UCB, Boulder, CO 80309 USA
基金
美国国家卫生研究院;
关键词
Mortality; genetic epidemiology; genotype; BODY-MASS INDEX; GENOME-WIDE-ASSOCIATION; LIFE; VARIANTS; SMOKING; HEIGHT; CANCER; RISK;
D O I
10.1093/ije/dyx041
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Mortality selection occurs when a non-random subset of a population of interest has died before data collection and is unobserved in the data. Mortality selection is of general concern in the social and health sciences, but has received little attention in genetic epidemiology. We tested the hypothesis that mortality selection may bias genetic association estimates, using data from the US-based Health and Retirement Study (HRS). Methods: We tested mortality selection into the HRS genetic database by comparing HRS respondents who survive until genetic data collection in 2006 with those who do not. We next modelled mortality selection on demographic, health and social characteristics to calculate mortality selection probability weights. We analysed polygenic score associations with several traits before and after applying inverse-probability weighting to account for mortality selection. We tested simple associations and time-varying genetic associations (i.e. gene-by-cohort interactions). Results: We observed mortality selection into the HRS genetic database on demographic, health and social characteristics. Correction for mortality selection using inverse probability weighting methods did not change simple association estimates. However, using these methods did change estimates of gene-by-cohort interaction effects. Correction for mortality selection changed gene-by-cohort interaction estimates in the opposite direction from increased mortality selection based on analysis of HRS respondents surviving through 2012. Conclusions: Mortality selection may bias estimates of gene-by-cohort interaction effects. Analyses of HRS data can adjust for mortality selection associated with observables by including probability weights. Mortality selection is a potential confounder of genetic association studies, but the magnitude of confounding varies by trait.
引用
收藏
页码:1285 / 1294
页数:10
相关论文
共 43 条
[31]   Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses [J].
Okbay, Aysu ;
Baselmans, Bart M. L. ;
De Neve, Jan-Emmanuel ;
Turley, Patrick ;
Nivard, Michel G. ;
Fontana, Mark Alan ;
Meddens, S. Fleur W. ;
Linner, Richard Karlsson ;
Rietveld, Cornelius A. ;
Derringer, Jaime ;
Gratten, Jacob ;
Lee, James J. ;
Liu, Jimmy Z. ;
de Vlaming, Ronald ;
Ahluwalia, Tarunveer S. ;
Buchwald, Jadwiga ;
Cavadino, Alana ;
Frazier-Wood, Alexis C. ;
Furlotte, Nicholas A. ;
Garfield, Victoria ;
Geisel, Marie Henrike ;
Gonzalez, Juan R. ;
Haitjema, Saskia ;
Karlsson, Robert ;
van der Laan, Sander W. ;
Ladwig, Karl-Heinz ;
Lahti, Jari ;
van der Lee, Sven J. ;
Lind, Penelope A. ;
Liu, Tian ;
Matteson, Lindsay ;
Mihailov, Evelin ;
Miller, Michael B. ;
Minica, Camelia C. ;
Nolte, Ilja M. ;
Mook-Kanamori, Dennis ;
van der Most, Peter J. ;
Oldmeadow, Christopher ;
Qian, Yong ;
Raitakari, Olli ;
Rawal, Rajesh ;
Realo, Anu ;
Rueedi, Rico ;
Schmidt, Borge ;
Smith, Albert V. ;
Stergiakouli, Evie ;
Tanaka, Toshiko ;
Taylor, Kent ;
Wedenoja, Juho ;
Wellmann, Juergen .
NATURE GENETICS, 2016, 48 (06) :624-+
[32]   Genome-wide association study identifies 74 loci associated with educational attainment [J].
Okbay, Aysu ;
Beauchamp, Jonathan P. ;
Fontana, Mark Alan ;
Lee, James J. ;
Pers, Tune H. ;
Rietveld, Cornelius A. ;
Turley, Patrick ;
Chen, Guo-Bo ;
Emilsson, Valur ;
Meddens, S. Fleur W. ;
Oskarsson, Sven ;
Pickrell, Joseph K. ;
Thom, Kevin ;
Timshel, Pascal ;
de Vlaming, Ronald ;
Abdellaoui, Abdel ;
Ahluwalia, Tarunveer S. ;
Bacelis, Jonas ;
Baumbach, Clemens ;
Bjornsdottir, Gyda ;
Brandsma, Johannes H. ;
Concas, Maria Pina ;
Derringer, Jaime ;
Furlotte, Nicholas A. ;
Galesloot, Tessel E. ;
Girotto, Giorgia ;
Gupta, Richa ;
Hall, Leanne M. ;
Harris, Sarah E. ;
Hofer, Edith ;
Horikoshi, Momoko ;
Huffman, Jennifer E. ;
Kaasik, Kadri ;
Kalafati, Ioanna P. ;
Karlsson, Robert ;
Kong, Augustine ;
Lahti, Jari ;
van der Lee, Sven J. ;
de Leeuw, Christiaan ;
Lind, Penelope A. ;
Lindgren, Karl-Oskar ;
Liu, Tian ;
Mangino, Massimo ;
Marten, Jonathan ;
Mihailov, Evelin ;
Miller, Michael B. ;
van der Most, Peter J. ;
Oldmeadow, Christopher ;
Payton, Antony ;
Pervjakova, Natalia .
NATURE, 2016, 533 (7604) :539-+
[33]   Common polygenic variation contributes to risk of schizophrenia and bipolar disorder [J].
Purcell, Shaun M. ;
Wray, Naomi R. ;
Stone, Jennifer L. ;
Visscher, Peter M. ;
O'Donovan, Michael C. ;
Sullivan, Patrick F. ;
Sklar, Pamela ;
Ruderfer, Douglas M. ;
McQuillin, Andrew ;
Morris, Derek W. ;
O'Dushlaine, Colm T. ;
Corvin, Aiden ;
Holmans, Peter A. ;
Macgregor, Stuart ;
Gurling, Hugh ;
Blackwood, Douglas H. R. ;
Craddock, Nick J. ;
Gill, Michael ;
Hultman, Christina M. ;
Kirov, George K. ;
Lichtenstein, Paul ;
Muir, Walter J. ;
Owen, Michael J. ;
Pato, Carlos N. ;
Scolnick, Edward M. ;
St Clair, David ;
Williams, Nigel M. ;
Georgieva, Lyudmila ;
Nikolov, Ivan ;
Norton, N. ;
Williams, H. ;
Toncheva, Draga ;
Milanova, Vihra ;
Thelander, Emma F. ;
Sullivan, Patrick ;
Kenny, Elaine ;
Quinn, Emma M. ;
Choudhury, Khalid ;
Datta, Susmita ;
Pimm, Jonathan ;
Thirumalai, Srinivasa ;
Puri, Vinay ;
Krasucki, Robert ;
Lawrence, Jacob ;
Quested, Digby ;
Bass, Nicholas ;
Crombie, Caroline ;
Fraser, Gillian ;
Kuan, Soh Leh ;
Walker, Nicholas .
NATURE, 2009, 460 (7256) :748-752
[34]   Replicability and Robustness of Genome-Wide-Association Studies for Behavioral Traits [J].
Rietveld, Cornelius A. ;
Conley, Dalton ;
Eriksson, Nicholas ;
Esko, Tonu ;
Medland, Sarah E. ;
Vinkhuyzen, Anna A. E. ;
Yang, Jian ;
Boardman, Jason D. ;
Chabris, Christopher F. ;
Dawes, Christopher T. ;
Domingue, Benjamin W. ;
Hinds, David A. ;
Johannesson, Magnus ;
Kiefer, Amy K. ;
Laibson, David ;
Magnusson, Patrik K. E. ;
Mountain, Joanna L. ;
Oskarsson, Sven ;
Rostapshova, Olga ;
Teumer, Alexander ;
Tung, Joyce Y. ;
Visscher, Peter M. ;
Benjamin, Daniel J. ;
Cesarini, David ;
Koellinger, Philipp D. .
PSYCHOLOGICAL SCIENCE, 2014, 25 (11) :1975-1986
[35]  
Rubin D.B., 2002, Statistical analysis with missing data, V2nd
[36]   Review of inverse probability weighting for dealing with missing data [J].
Seaman, Shaun R. ;
White, Ian R. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2013, 22 (03) :278-295
[37]   Commentary: Does mortality from smoking have implications for future Mendelian randomization studies? [J].
Taylor, Amy E. ;
Munafo, Marcus R. .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2014, 43 (05) :1483-1486
[38]   Instrumental Variable Estimation in a Survival Context [J].
Tchetgen, Eric J. Tchetgen ;
Walter, Stefan ;
Vansteelandt, Stijn ;
Martinussen, Torben ;
Glymour, Maria .
EPIDEMIOLOGY, 2015, 26 (03) :402-410
[39]   HETEROGENEITY RUSES - SOME SURPRISING EFFECTS OF SELECTION ON POPULATION-DYNAMICS [J].
VAUPEL, JW ;
YASHIN, AI .
AMERICAN STATISTICIAN, 1985, 39 (03) :176-185
[40]   Association of a Genetic Risk Score With Body Mass Index Across Different Birth Cohorts [J].
Walter, Stefan ;
Mejia-Guevara, Ivan ;
Estrada, Karol ;
Liu, Sze Y. ;
Glymour, M. Maria .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (01) :63-69